Chapter 1 Prerequisites for Calculus(微積分預備知識)
1.1 Sets and Intervals(集合與區(qū)問)
1.2 Definitions of Functions(函數(shù)的定義)
1.3 Properties of Functions(函數(shù)的性質)
1.4 Function Operations(函數(shù)的運算)
1.5 Basic Elementary Functions(基本初等函數(shù))
1.6 Parametric Equations(參數(shù)方程)
1.7 Polar Functions(極坐標方程)
1.8 Transformations of Functions(函數(shù)圖像的變換)
Practice Exercises(習題)
習題參考答案
Chapter 2 Limits and Continuity(極限和連續(xù))
2.1 Definitions of Limits(極限的定義)
2.2 The Precise Definition of a Limit(極限的嚴格定義)
2.3 Theorems on Limits(極限的定理)
2.4 Computing Limits(極限的計算)
2.5 Asymptotes(漸近線)
2.6 Continuity(連續(xù)性)
2.7 連續(xù)函數(shù)定理
Practice Exercises(習題)
習題參考答案
Chapter 3 Definition of Derivative(導數(shù)的定義)
3.1 Definition of Derivative(導數(shù)的定義)
3.2 高階導數(shù)
3.3 The Relationship between Differentiability and Continuity(可導與連續(xù)的關系)
3.4 不可導點的類型
Practice Exercises(習題)
習題參考答案
Chapter 4 Computation of Derivative(導數(shù)的計算)
4.1 Arithmetic Operations on Derivative(導數(shù)的代數(shù)運算)
4.2 Derivative of Inverse Function(反函數(shù)的導數(shù))
4.3 Essential Fornmlas(基本公式)
4.4 Chain Rule(鏈式法則)
4.5 Implicit Function Derivative(隱函數(shù)的導數(shù))
4.6 Logarithmic I)ifferentiation(對數(shù)求導法)
4.7 Parametric Function Derivative(參數(shù)方程的導數(shù))
4.8 Polar Function Derivative(極坐標方程的導數(shù))
Practice Exercises(習題)
習題參考答案
Chapter 5 Applications of Derivative(導數(shù)的應用)
5.1 Average and Instantaneous Rates of Change(平均變化率與瞬時變化率)
5.2 Tangents and Normals(切線和法線)
5.3 The Mean Value Theorem for Derivatives(微分中值定理)
5.4 Related Rates(相關變化率)
5.5 L'H6pital's Rule(洛必達法則)
5.6 Monotony of Functions(函數(shù)的單調性)
5.7 Concavity and the Point of Inflection(凹凸性與拐點)
5.8 Curve Sketching(函數(shù)圖形的描繪)
5.9 Absolute Minimum Value and Absolute Maximum Value(最大值與最小值)
5.10 Motion Problems(運動問題)
Practice Exercises(習題)
習題參考答案
Chapter 6 Differential and Approximation(微分與近似計算)
6.1 Differentials(微分)
6.2 Approximating a Derivative Value(導數(shù)的近似計算)
6.3 Local Linear Approximation(局部線性近似)
6.4 Newton's Method(牛頓法)
Practice Exercises(習題)
習題參考答案
Chapter 7 Antidifferentiation(不定積分)
7.1 Definition of Antidifferentiation(不定積分的定義)
7.2 Integral by Substitution(換元積分法)
7.3 Integral by Parts(分部積分法)
7.4 Indefinite Integral of Rational Functions(有理函數(shù)的不定積分)
Practice Exercises(習題)
習題參考答案
Chapter 8 Definite Integrals(定積分)
8.1 Riemann Sums and Definite Integrals(黎曼和與定積分)
8.2 Approximation of Definite Integral(定積分的近似計算)
8.3 Properties of Definite Integrals(定積分的性質)
8.4 Fundamental Theorem of Calculus(微積分基本定理)
8.5 Operations on Definite Integrals(定積分的計算)
8.6 Improper Integral(反常積分)
Practice Exercises(習題)
習題參考答案
Chapter 9 Applications of the Integral to Geometry(定積分的幾何應用)
9.1 The Element Method of Definite Integrals(定積分的元素法)
9.2 Area between Two Curves(由兩條曲線所圍成的圖形的面積)
9.3 Volumes by Slicing(切片法求體積)
9.4 Length of a Plan Curve(平面曲線的弧長)
Practice Exercises(習題)
習題參考答案
Chapter 10 Differential Equations(微分方程)
10.1 Definitions of Differential Equations(微分方程的相關概念)
10.2 Separable Differential Equations(可分離變量的微分方程)
10.3 Numerical and Graphical Methods(微分方程的數(shù)值和圖像解法)
10.4 Applications of First—Order Differential Equations(一階微分方程的應用)
Practice Exercises(習題)
習題參考答案
Chapter 11 Sequences and Series(序列和級數(shù))
11.