注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術(shù)自然科學數(shù)學分層分位模擬:理論、方法及應(yīng)用(英文版)

分層分位模擬:理論、方法及應(yīng)用(英文版)

分層分位模擬:理論、方法及應(yīng)用(英文版)

定 價:¥398.00

作 者: 田茂再 著
出版社: 科學出版社
叢編項:
標 簽: 暫缺

ISBN: 9787030699039 出版時間: 2022-01-01 包裝: 平裝
開本: 16開 頁數(shù): 735 字數(shù):  

內(nèi)容簡介

  隨著科學技術(shù)的迅猛發(fā)展,具有復(fù)雜分層結(jié)構(gòu)的數(shù)據(jù)在現(xiàn)實生活中很普遍。能完全剖析這類數(shù)據(jù),發(fā)覺該類數(shù)據(jù)表象下的潛在規(guī)律性對于統(tǒng)計學等科研領(lǐng)域很有意義?!斗謱臃治荒M——理論、方法及以應(yīng)用(英文版)》致力于介紹復(fù)雜分層數(shù)據(jù)分析前沿知識,側(cè)重于分層分位回歸理論、方法及其應(yīng)用研究。內(nèi)容主要包括三大塊:分層數(shù)據(jù)建模、分位回歸與分層-分位回歸。主要涉及到線性分層分位回歸模擬、非參數(shù)分層分位回歸模擬、適應(yīng)性分層分位回歸模擬、可加性分層分位回歸模擬、變系數(shù)分層分位回歸模擬、單指數(shù)分層分位回歸模擬、分層分位自回歸模擬、復(fù)合分層分位回歸模擬、高維分層分位回歸模擬、分層分位回歸模擬、分層樣條分位回歸模擬、分層線性分位回歸模擬、分層半?yún)?shù)分位回歸模擬、復(fù)合分層線性分位回歸模擬、復(fù)合分層半?yún)?shù)分位回歸模擬等。

作者簡介

暫缺《分層分位模擬:理論、方法及應(yīng)用(英文版)》作者簡介

圖書目錄

Contents
Preface
PartI QUANTILE REGRESSION MODELLING
Chapter1 INEAR QUANTILE REGRESSION 3
1.1 Education: Mathematical Achievements 3
1.1.1 Introduction 3
1.1.2 Data5
1.1.3 Estimation Results 7
1.1.4 Confidence Intervals and Related Interpretations 11
1.1.5 Conclusion 16
1.2 Large Sample Properties 16
1.3 Bibliographic Notes 19
Chapter2 NONPARAMETRIC QUANTILE REGRESSION 20
2.1 Robust Local Approximation Method 20
2.1.1 Introduction 20
2.1.2 Consistency 22
2.1.3 Rate of Convergence 26
2.1.4 Asymptotic Distribution 33
2.1.5 Optimization of Estimate 37
2.1.6 Bibliographic Notes 39
2.2 Nonparametric Function Estimation 40
2.2.1 Introduction 40
2.2.2 Asymptotic Properties 42
2.2.3 Applications 52
2.2.4 Bibliographic Notes 54
2.3 Local Linear Quantile Regression 55
2.3.1 Introduction 55
2.3.2 Local Linear Check Function Minimization 58
2.3.3 Local Linear Double-Kernel Smoothing 62
2.3.4 Bibliographic Notes 68
Chapter3 ADAPTIVE QUANTILE REGRESSION 69
3.1 Locally Constant Adaptive Quantile Regression 69
3.1.1 Introduction 69
3.1.2 Adaptive Estimation 72
3.1.3 Implementation 73
3.1.4 Theoretical Properties 75
3.1.5 Bibliographic Notes 82
3.2 Locally Linear Adaptive Quantile Regression 82
3.2.1 Introduction 82
3.2.2 Local Linear Adaptive Estimation 84
3.2.3 Algorithm 85
3.2.4 Theoretical Properties 86
3.2.5 Bibliographic Notes 89
Chapter4 ADAPTIVE QUANTILES REGRESSION 91
4.1 Additive Conditional Quantiles with High-Dimensional Covariates 91
4.1.1 Introduction 91
4.1.2 Methodology 93
4.1.3 Asymptotic Behavior 98
4.1.4 Concluding Remarks 105
4.1.5 Bibliographic Notes 105
4.2 Nonparametric Estimation 105
4.2.1 Introduction 106
4.2.2 Estimator 108
4.2.3 Asymptotic Results 110
4.2.4 Conclusions 126
4.2.5 Bibliographic Notes 126
Chapter5 QUANTILE REGRESSION BASED ON VARYINGCOEFFICIENT MODELS 127
5.1 Adaptive Quantile Regression Based on Varying-coefficient Models 127
5.1.1 Introduction 127
5.1.2 Adaptive Estimation 129
5.1.3 Theoretical Properties 135
5.1.4 Conclusion 142
5.1.5 Bibliographic Notes 143
5.2 Varying-coefficient Models with Heteroscedasticity 143
5.2.1 Introduction 144
5.2.2 Local Linear CQR-AQR Estimation 146
5.2.3 Local Quadratic CQR-AQR Estimation 156
5.2.4 Bandwidth Selection 157
5.2.5 Hypothesis Testing 158
5.2.6 Local m-polynomial CQR-AQR Estimation 159
5.2.7 Discussion 160
5.2.8 Bibliographic Notes 161
Chapter6 SINGLE-INDEX QUANTILE REGRESSION 163
6.1 Single Index Models 163
6.1.1 Introduction 163
6.1.2 The Model and Estimation 165
6.1.3 Large Sample Properties 168
6.1.4 Conclusions 178
6.1.5 Bibliographic Notes 178
6.2 CQR for Varying Coefficient Single-index Models 179
6.2.1 Introduction 179
6.2.2 Quantile Regression 181
6.2.3 Composite Quantile Regression 184
6.2.4 Discussion 194
6.2.5 Bibliographic Notes 194
Chapter7 QUANTILE AUTOREGRESSION 196
7.1 Introduction 196
7.2 The Model 197
7.2.1 Description of The Model 197
7.2.2 Properties 199
7.3 Estimation 203
7.4 Quantitle Monotonicity 208
7.5 Inference 209
7.5.1 Wald Process and Related Tests 209
7.5.2 Testing for Asymmetric Dynamics 210
7.5.3 Bibliographic Notes 212
Chapter8 COMPOSITE QUANTILE REGRESSION 213
8.1 Composite Quantile and Model Selection 213
8.1.1 Introduction and Motivation 213
8.1.2 Composite Quantile Regression 216
8.1.3 Asymptotic Relative Efficiency 220
8.1.4 The CQR-oracular Estimator 225
8.1.5 Concluding Remarks 228
8.1.6 Bibliographic Notes 229
8.2 Local Quantile Regression 229
8.2.1 Introduction 229
8.2.2 Estimation of Regression Function 231
8.2.3 Estimation of Derivative 235
8.2.4 Local p-polynomial CQR Smoothing 238
8.2.5 Discussion 246
8.2.6 Bibliographic Notes 246
Chapte9 HIGH DIMENSIONAL QUANTILE REGRESSION 248
9.1 Diagnostic for Ultra High Heterogeneity 248
9.1.1 Introduction 248
9.1.2 Nonconvex Penalized Quantile Regression 251
9.1.3 Discussion 262
9.1.4 Bibliographic Notes 263
9.2 Bayesian Quantile Regression 264
9.2.1 Introduction 264
9.2.2 Asymmetric Laplace Distribution 265
9.2.3 Bayesian Approach 266
9.2.4 Improper Priors for Parameters 267
9.2.5 Discussion 269
9.2.6 Bibliographic Notes 270
PartII HIERARCHICAL MODELING
Chapter10 HIERARCHICAL LINEAR MODELS 273
10.1 Bayes Estimates 273
10.1.1 Introduction 273
10.1.2 Exchangeability 274
10.1.3 General Bayesian Linear Model 277
10.1.4 Estimation 281
10.1.5 Bibliographic Notes 283
10.2 Maximum Likelihood from Incomplete Data 283
10.2.1 Introduction 283
10.2.2 Definitions of the EM Algorithm 286
10.2.3 General Properties 290
10.2.4 Bibliographic Notes 296
10.3 EM-algorithm 296
10.3.1 Introduction 297
10.3.2 Covariance Components Models 298
10.3.3 Estimation of

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號