Kai Lai Chung(鐘開萊,1917-2009) 華裔數(shù)學(xué)家、概率學(xué)家。1936年考入清華大學(xué)物理系,1940年畢業(yè)于西南聯(lián)合大學(xué)數(shù)學(xué)系,之后任西南聯(lián)合大學(xué)數(shù)學(xué)系助教。1944年考取第六屆庚子賠款公費(fèi)留美獎學(xué)金。1945年底赴美國留學(xué),1947年獲普林斯頓大學(xué)博士學(xué)位。20世紀(jì)50年代任教于美國紐約州Syracuse大學(xué),60年代以后任斯坦福大學(xué)數(shù)學(xué)系教授、系主任、名譽(yù)教授。鐘開萊著有十余部專著,為世界公認(rèn)的20世紀(jì)后半葉“概率學(xué)界學(xué)術(shù)教父”。
圖書目錄
Preface to the third edition iii Preface to the second edition v Preface to the first edition vii 1 Distribution function 1.1 Monotone functions 1 1.2 Distribution functions 7 1.3 Absolutely continuous and singular distributions 11 2 Measure theory 2.1 Classes of sets 16 2.2 Probability measures and their distribution function 21 3 Random variable, Expectation.Independence 3.1 General definition 34 3.2 Properties of mathematical expectation 41 3.3 Independence 53 4 Convergence concepts 4.1 Various modes of convergence 68 4.2 Almost sure convergence; Borel-Cantelli lemma 75 4.3 Vague convergence 84 4.4 Continuation 91 4.5 Uniform untegrability; convergence of moments 99 5 Law of large numbers, Randrom series 5.1 Simple limit theorems 106 5.2 Weak low of large nymbers 112 5.3 Convergence of serices 121 5.4 Strong law of large numbers 129 5.5 Applications 138 Bibliographical Note 148 6 Characteristic function 6.1 General properties; convolutions 150 6.2 Uniqueness and inversion 160 6.3 Convergence theorems 169 6.4 Simple applications 175 6.5 Representation theorems 187 6.6 Multidimentstional case; Laplace transforms 196 Bibliographical Note 204 7 Central limit theorem and its ramifications 7.1 Liapounov's theorem 205 7.2 Lindeberg-Feller theorem 214 7.3 Ramifications of the central limit theorem 224 7.4 Error estimation 235 7.5 Law of the iterated logarithm 242 7.6 Infinite divistibility 250 Bibliographical Note 261 8 Random walk 8.1 Zero-or-one laws 263 8.2 Basic notions 270 8.3 Recurrence 278 8.4 Fine structure 288 8.5 Continuation 298 Bibliographical Note 308 9 Conditioning.Markov property. Martingale 9.1 Basic properties of conditional expectation 310 9.2 Conditional independence; Markov propery 322 9.3 Basci properties of smartingales 334 9.4 Inequalities and convergence 346 9.5 Applications 360 Bibliographical Note 373 Supplement: Measure and Integral 1 Construvtion of measure 375 2 Characterization of extensions 380 3 Measures in R 387 4 Integral 395 5 Applications 407 General Bibliography 413 Index 415