注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)基于copula的相關(guān)性測(cè)度

基于copula的相關(guān)性測(cè)度

基于copula的相關(guān)性測(cè)度

定 價(jià):¥68.00

作 者: 單青松
出版社: 經(jīng)濟(jì)管理出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

購(gòu)買這本書(shū)可以去


ISBN: 9787509661871 出版時(shí)間: 2020-10-01 包裝: 平裝-膠訂
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  Copula 在應(yīng)用統(tǒng)計(jì)領(lǐng)域,如金融、氣象、水文等有廣泛的應(yīng)用。本書(shū)從copula視角介紹了變量間幾種相關(guān)性的度量,著重討論了變量之間函數(shù)型關(guān)系強(qiáng)弱的基于copula的度量。 變量間的函數(shù)型關(guān)系是一種較為廣泛的概念,既包括了常見(jiàn)的線性關(guān)系、非線性單調(diào)關(guān)系,也包括了目前較少討論的非單調(diào)關(guān)系。因此本文的工作具有廣泛的適用性。同時(shí)也為非線性關(guān)系的度量提供了另一種思路。函數(shù)型關(guān)系是一個(gè)比線性關(guān)系、單調(diào)型關(guān)系更廣泛的概念,本書(shū)分別針對(duì)離散型和連續(xù)型函數(shù)關(guān)系作了討論。對(duì)離散型變量構(gòu)造了幾種基于subcopula的測(cè)度, 并討論了這些測(cè)度的理論性質(zhì)。對(duì)連續(xù)性變量的測(cè)度,主要從非參數(shù)核密度估計(jì)入手構(gòu)造了其非參數(shù)估計(jì)。討論了其漸進(jìn)性質(zhì),并給出了數(shù)值模擬結(jié)果。

作者簡(jiǎn)介

  單青松,201 5年獲美國(guó)新墨西哥州立大學(xué)數(shù)理統(tǒng)計(jì)博士學(xué)位?,F(xiàn)任江西財(cái)經(jīng)大學(xué)統(tǒng)計(jì)學(xué)院講師,Journal of Nonparametric Statistfcs、Scan-dinavian Journal of Statistics審稿人。主要研究方向?yàn)榉菂?shù)統(tǒng)計(jì)和Copula理論。

圖書(shū)目錄

1 Outline and Summary
1.1 Introduction
1.2 Outline
2 Statistical Modeling and Measurement of Association
2.1 The concept of copulas
2.2 Nonparametric estimations of copula
2.2.1 An overview of empirical processes
2.2.2 Nonparametric estimation via the empirical copula
2.2.3 Functional delta-method and hadamard differentiability
2.2.4 Weak convergence of the empirical copula process
2.2.5 Nonparametric kernel estimations
2.2.6 Bias and variance of kernel density estimator
2.2.7 Optimal bandwith
2.3 Measures of association and dependence
2.3.1 Pearson's corelation coefficient
2.3.2 Spearman's ρ and Kendall's τ
2.3.3 The measure for mutual complete dependence
2.3.4 The * operator and the measure of mutual complete dependence
3 A Measure for Positive Quadrant Dependence
4 Measures for Discrete MCD and Functional Dependence
4.1 The measure of MCD through conditional distributions
4.2 The measure of MCD through a subcopula
4.3 Comparison to Siburg and Stoimenov's measure of MCD
4.3.1 Extension using E-process
4.3.2 Bilinear extension
4.4 Remarks on measures of dependence
4.5 Other measures
4.5.1 The measure μ20
4.5.2 The measure λ
4.5.3 Construction of the measure
4.5.4 Proofs of the construction of λ
5 Nonparametric Estimation of the Measure of Functional Dependence
5.1 Nonparametric estimation through the density of copula
5.1.1 Estimating with pseudo-observations
5.1.2 Kernel estimation through copula density functions
5.1.3 Asymptotic behavior of the estimator of functional dependence
5.2 Nonparametric estimation of the measure of MCD via copula
5.3 Simulation results
6 Implementation and Simulations
6.1 Choosing the evaluation grid
6.2 Simulation
6.3 Comparison of measures
7 Application
8 Discussion
References
Appendix
A List of Symbols
B Calculation of the Measure of PQD
C Beta Kernel Estimation
D Kernel Estimation
E FDM of variables in crime dataset

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)