注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)對(duì)稱函數(shù)和麥克唐納多項(xiàng)式:余代數(shù)結(jié)構(gòu)與Kawanaka恒等式(英文)

對(duì)稱函數(shù)和麥克唐納多項(xiàng)式:余代數(shù)結(jié)構(gòu)與Kawanaka恒等式(英文)

對(duì)稱函數(shù)和麥克唐納多項(xiàng)式:余代數(shù)結(jié)構(gòu)與Kawanaka恒等式(英文)

定 價(jià):¥38.00

作 者: [澳] 羅賓·蘭格
出版社: 哈爾濱工業(yè)大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

ISBN: 9787560343839 出版時(shí)間: 2021-09-01 包裝: 平裝-膠訂
開本: 32開 頁數(shù): 82 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  The ring of symmetric functions A, with natural basis given by the Schur functions, arise in many different areas of mathematics. For example, as the cohomology ring of the grassmanian, and as the representation ring of the symmetric group. One may define a coproduct on A by the plethystic addition on alphabets. In this way the ring of symmetric functions becomes a Hopf algebra. The Littlewood-Richardson numbers may be viewed as the structure constants for the co-product in the Schur basis. The first part of this thesis, inspired by the umbral calculus of Gian-Carlo Rota, is a study of the co-algebra maps of A, The Macdonald polynomials are a somewhat mysterious qt-deformation of the Schur functions. The second part of this thesis contains a proof a generating function identity for the Macdonald polynomials which was originally conjectured by Kawanaka.

作者簡(jiǎn)介

暫缺《對(duì)稱函數(shù)和麥克唐納多項(xiàng)式:余代數(shù)結(jié)構(gòu)與Kawanaka恒等式(英文)》作者簡(jiǎn)介

圖書目錄

1.Symmetric functions of Littlewood-Richardson type
1.1.Symmetric Functions
1.1.1.Partitions
1.1.2.Monomial syrmnetric functions
1.1.3.Plethystic notation
1.1.4.Schur functions
1.2.The Umbral Calculus
1.2.1.Coalgebras
1.2.2.Sequences of Binomial Type
1.3.The Hall inner-product
1.3.1.Preliminaries
1.3.2.Column operators
1.3.3.Duality
1.4.Littlewood-Richardson Bases
1.4.1.Generalized complete symmetric functions
1.4.2.Umbraloperators
1.4.3.Column operators
1.4.4.Generalized elementary symmetric functions
1.5.Examples
2.A generating function identity for Macdonald polynomials
2.1.Macdonald Polynomials
2.1.1 .Notation
2.1.2.Operator definition
2.1.3.Characterization using the inner product
2.1.4.Arms and legs
2.1.5.Duality
2.1.6.Kawanaka conjecture
2.2.Resultants
2.2.1.Residue calculations
2.3.Pieri formula and recurrence
2.3.1.Arms and legs again
2.3.2.Pieri formula
2.3.3.Recurrence
2.4.The Proof
2.4.1.The Schur case
2.4.2.Step one
2.4.3.Step two
2.4.4.Step three
References
編輯手記

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)