Victor P. Nelson,美國(guó)俄亥俄州立大學(xué)電氣工程博士,現(xiàn)為奧本大學(xué)電氣與計(jì)算機(jī)工程教授。IEEE計(jì)算機(jī)協(xié)會(huì)和IEEE教育協(xié)會(huì)的終身高級(jí)會(huì)員。Nelson教授出版過(guò)多部數(shù)字設(shè)計(jì)方面的教材,發(fā)表過(guò)大量的文章,并且是多家公司的微處理器應(yīng)用和容錯(cuò)系統(tǒng)顧問(wèn)。Victor P. Nelson,美國(guó)俄亥俄州立大學(xué)電氣工程博士,現(xiàn)為奧本大學(xué)電氣與計(jì)算機(jī)工程教授。IEEE計(jì)算機(jī)協(xié)會(huì)和IEEE教育協(xié)會(huì)的終身高級(jí)會(huì)員。Nelson教授出版過(guò)多部數(shù)字設(shè)計(jì)方面的教材,發(fā)表過(guò)大量的文章,并且是多家公司的微處理器應(yīng)用和容錯(cuò)系統(tǒng)顧問(wèn)。
圖書(shū)目錄
0 Computers and Digital Systems 1 Learning Objectives 1 0.1 A Brief History of Computing 1 0.1.1 Beginnings: Mechanical Computers 2 0.1.2 Early Electronic Computers 2 0.1.3 The First Four Generations of Computers 2 0.1.4 The Fifth Generation and Beyond 4 0.2 Digital Systems 4 0.2.1 Digital versus Analog Systems 5 0.2.2 Digital System Levels of Abstraction 5 0.3 Electronic Technologies 8 0.3.1 Moore’s “Law” 9 0.3.2 Fixed versus Programmable Logic 10 0.3.3 Microcontrollers 10 0.3.4 Design Evolution 10 0.4 Applications of Digital Systems 12 0.4.1 General-Purpose Digital Computers 12 0.4.2 Controllers 17 0.4.3 Internet of Things (IoT) 18 0.4.4 Interfacing 18 0.5 Summary and Review Questions 20 0.6 Collaboration Activities 20 References 21 1 Number Systems and Digital Codes 22 Learning Objectives 22 1.1 Number Systems 22 1.1.1 Positional and Polynomial Notations 23 1.1.2 Commonly Used Number Systems 23 1.2 Arithmetic 24 1.2.1 Binary Arithmetic 24 1.2.2 Hexadecimal Arithmetic 27 1.3 Base Conversions 29 1.3.1 Conversion Methods and Algorithms 29 1.3.2 Conversion between Base A and Base B When B = Ak 32 1.4 Signed Number Representation 33 1.4.1 Sign Magnitude Numbers 33 1.4.2 Complementary Number Systems 35 1.5 Digital Codes 45 1.5.1 Numeric Codes 46 1.5.2 Character and Other Codes 50 1.5.3 Error Detection and Correction Codes 53 1.6 Summary and Review Questions 58 1.7 Collaboration Activities 58 Problems 59 2 Logic Circuits and Boolean Algebra 61 Learning Objectives 61 2.1 Logic Gates and Logic Circuits 61 2.1.1 Truth Tables 61 2.1.2 Basic Logic Gates 62 2.1.3 Combinational Logic Circuits 65 2.1.4 Sequential Logic Circuits 68 2.2 Hardware Description Languages (HDLs) 69 2.2.1 Verilog 69 2.2.2 VHDL 70 2.3 Boolean Algebra 72 2.3.1 Postulates and Fundamental Theorems 72 2.3.2 Boolean (Logic) Functions and Equations 77 2.3.3 Minterms, Maxterms, and Canonical Forms 78 2.3.4 Incompletely Specified Functions (Don’t Cares) 81 2.4 Minimization of Logic Expressions 82 2.4.1 Minimization Goals and Methods 82 2.4.2 Karnaugh Maps (K-Maps) 84 2.4.3 Minimization of Logic Expressions Using K-Maps 91 2.4.4 Quine?CMcCluskey Method 106 2.5 Summary and Review Questions 111 2.6 Collaboration Activities 112 Problems 113 3 Combinational Logic Circuit Design and Analysis 123 Learning Objectives 123 3.1 Design of Combinational Logic Circuits 123 3.1.1 AND?COR and NAND?CNAND Circuits 124 3.1.2 OR?CAND and NOR?CNOR Circuits 125 3.1.3 Two-Level Circuits 126 3.1.4 Multilevel Circuits and Factoring 128 3.1.5 EXCLUSIVE-OR (XOR) Circuits 131 3.2 Analysis of Combinational Circuits 134 3.2.1 Boolean Algebra 134 3.2.2 Truth Tables 136 3.2.3 Timing Diagrams 137 3.2.4 Positive and Negative Logic 142 3.3 Design Using Higher-Level Devices 143 3.3.1 Decoders 143 3.3.2 Encoders 155 3.3.3 Multiplexers and Demultiplexers 159 3.3.4 Arithmetic Circuits 169 3.4 Summative Design Examples 182 3.4.1 Design Flow 182 3.4.2 Bank Security-Lock Controller 182 3.4.3 Seven-Segment Display Decoder 186 3.4.4 Four-Function Arithmetic Logic Unit (add, subtract, AND, XOR) 192 3.4.5 Binary Array Multiplier 196 3.5 Summary and Review Questions 200 3.6 Collaboration Activities 201 Problems 202 4 Introduction to Sequential Circuits 213 Learning Objectives 213 4.1 Models and Classes of Sequential Circuits 214 4.1.1 Finite-State Machines 214 4.1.2 State Diagrams and State Tables 216 4.1.3 Algorithmic State Machines 219 4.2 Memory Devices 221 4.2.1 Latches 222 4.2.2 Flip-Flops 234 4.2.3 Latch and Flip-Flop Summary 244 4.3 Registers 244 4.4 Shift Registers 248 4.5 Counters 253 4.5.1 Synchronous Binary Counters 254 4.5.2 Asynchronous Binary Counters 257 4.5.3 Modulo-N Counters 258 4.5.4 Ring and Twisted-Ring Counters 263 4.6 Summative Design Examples 272 4.6.1 Register File 272 4.6.2 Multiphase Clock 273 4.6.3 Digital Timer 275 4.6.4 Programmable Baud Rate Generator 278 4.7 Summary and Review Questions 281 References 281 4.8 Collaboration Activities 282 Problems 283 5 Synchronous Sequential Logic Circuit Analysis and Design 291 Learning Objectives 291 5.1 Analysis of Sequential Circuits 291 5.1.1 Circuit Analysis Using State Diagrams and State Tables 291 5.1.2 Analysis of Sequential Circuit Logic Diagrams 293 5.1.3 Summary 305 5.2 Design of Synchronous Sequential Circuits 305 5.2.1 Design Procedure 306 5.2.2 Flip-Flop Input Tables 309 5.2.3 Design Examples 311 5.2.4 One-Hot Finite-State Machine Design Method 331 5.2.5 Incompletely Specified Sequential Circuits 336 5.3 State Reduction in Sequential Circuits 338 5.3.1 Redundant States 338 5.3.2 State Reduction in Completely Specified Circuits 340 5.4 Summative Design Examples 344 5.4.1 Drink Vending Machine Control Unit 344 5.4.2 Binary Multiplier 347 5.4.3 Traffic Light Controller 350 5.5 Summary and Review Questions 361 References 362 5.6 Collaboration Activities 362 Problems 366 6 Asynchronous Sequential Circuit Analysis and Design 377 Learning Objectives 377 6.1 Types of Asynchronous Circuits 377 6.2 Analysis and Design of Pulse-Mode Circuits 378 6.2.1 Analysis of Pulse-Mode Circuits 379 6.2.2 Design of Pulse-Mode Circuits 384 6.3 Analysis of Fundamental-Mode Circuits 390 6.3.1 Introduction 392 6.3.2 Excitation and Flow Tables 393 6.3.3 Analysis Procedure 394 6.4 Design of Fundamental-Mode Circuits 396 6.4.1 Flow Table Design and Realization 396 6.4.2 Races and Cycles 405 6.4.3 Eliminating Race Conditions 409 6.4.4 Hazards 418 6.5 Summative Design Examples 419 6.5.1 Design Flow 419 6.5.2 Asynchronous Vending Machine Controller 420 6.5.3 Asynchronous Bus Arbiters 422 6.6 Summary and Review Questions 429 6.7 Collaboration Activities 429 Problems 430 7 Programmable Digital Logic Devices 440 Learning Objectives 440 7.1 Programmable Digital Logic Device Technology 440 7.2 Field-Programmable Gate Arrays (FPGAs) 442 7.2.1 Configurable Logic Blocks 443 7.2.2 Input/Output Blocks 452 7.2.3 Interconnect Resources 454 7.2.4 Clock Resources 456 7.2.5 Other FPGA Resources and Options 457 7.2.6 FPGA Design Process and Examples 457 7.3 Programmable Logic Devices (PLDs) 466 7.3.1 Array Structures for Combinational Logic Functions 467 7.3.2 PLD Output and Feedback Options 484 7.3.3 PLDs for Sequential Circuit Applications 489 7.3.4 Complex PLDs (CPLDs) 492 7.3.5 Design Examples 493 7.4 Summative Design Examples 496 7.4.1 Binary Division Circuit 496 7.4.2 Multiplexed Seven-Segment Display Controller 502 7.5 Summary and Review Questions 510 References 510 7.6 Collaboration Activities 511 Problems 513 8 Design of Digital Systems 519 Learning Objectives 519 8.1 Design Processes 519 8.1.1 Hierarchical Design 519 8.1.2 Fixed Logic versus Programmable Logic 521 8.1.3 Digital System Design Flow 521 8.2 Design Examples 521 8.2.1 Tiny RISC 4 (TRISC4) Processor 522 8.2.2 One-Lane Traffic Controller 533 8.2.3 Universal Asynchronous Receiver/Transmitter (UART) 540 8.2.4 Elevator Controller 547 8.3 Summary and Review Questions 552 8.4 Collaboration Activities 552 Problems 552 Appendix A Verilog Primer 554 A.1 Introduction 554 A.2 General Concepts and Modules 554 A.2.1 Module Structure 555 A.2.2 Port Declarations 556 A.2.3 Data Types 556 A.2.4 Numbers 557 A.3 Gate-Level Structural