1. Development of melt electrospinning: the past,present,and future 1.1 Electrospinning 1 1.2 The working principle of electrospinning 2 1.3 Types of electrospinning 2 1.4 Solution electrospinning 2 1.5 Melt electrospinning 3 1.6 The scope of this book 4 References 4
3. Formation of fibrous structure and influential factors in melt electrospinning 3.1 Polycaprolactone 22 3.1.1 Experiment 23 3.1.2 Results and discussion 23 3.2 Polylactic acid (PLA) 24 3.2.1 The diameter of PLLA fiber under a pulsed electric field 28 3.2.2 Thermal degradation of PLA fiber 31 3.2.3 The relative molecular mass of PLA fibers 39 3.2.4 Orientation and crystallinity of the PLA fiber 40 3.3 Phenolic resin 53 3.3.1 Materials and equipment 54 3.3.2 Orthogonal experimental arrangements 55 3.3.3 Optimal spinning conditions 57 3.3.4 Fiber heat resistance and crystallinity 59 3.3.5 Session conclusion 63 3.4 Polypropylene (PP) 64 3.4.1 Equipment 65 3.4.2 Effect of collecting plate on spinning electric field 72 3.4.3 Effect of upper plate on spinning electric field 73 3.4.4 Effect of the hyperbranched polymers 75 3.4.5 Effect of polar additive on PP 79 3.5 Conclusion 84 References 84 Further reading 90
4. Melt electrospinning in a parallel electric field 4.1 Introduction 91 4.2 Method and experiments 92 4.2.1 Experimental material 92 4.2.2 Parallel electrospinning equipment 93 4.2.3 Finite element modeling 94 4.2.4 Theoretical analysis 94 4.3 Results and discussion 96 4.3.1 Experimental electrospinning in a parallel electric field 96 4.3.2 Finite element simulation of the electrospinning process in a parallel electric field 97 4.4 Conclusion 100 References 100
5. Dissipative particle dynamics simulation on melt electrospinning 5.1 Introduction 103 5.2 Differential scanning calorimetry simulation under different electric fields 107 5.2.1 Electrostatic field 107 5.2.2 Pulsed electric field 111 5.3 Conclusion 119 References 119
6. Experimental study on centrifugal melt electrospinning 6.1 Overview of centrifugal melt electrospinning 123 6.2 Research progress of centrifugal melt electrospinning at home and abroad 125 6.3 The significance of centrifugal melt electrospinning devices 128 6.4 Experimental study on centrifugal melt electrospinning 129 6.4.1 Experimental section 129 6.4.2 Characterization method 131 6.4.3 Results and discussion 132 6.5 Innovative design of centrifugal melt electrospinning devices 140 6.6 Conclusion 141 References 142
7. Dissipative particle dynamics simulations of centrifugal melt electrospinning 7.1 Introduction 145 7.2 The dissipative particle dynamics model in centrifugal melt electrospinning 146 7.3 Different electric field simulation of centrifugal melt electrospinning 148 7.3.1 Centrifugal melt electrospinning in an electrostatic field 149 7.3.2 Centrifugal melt electrospinning in a pulsed electric field 153 7.4 Conclusion 156 References 156
8. Three-dimensional (3D) printing based on controlled melt electrospinning in polymeric biomedical materials 8.1 Introduction 159 8.2 Basic principles of 3D printing based on electrospinning 160 8.3 Different auxiliary electrode and dielectric plate collectors 161 8.3.1 Setup for electrospinning with an electrostatic lens system 163 8.3.2 Dielectric plate with sharp-pin electrode 166 8.4 Patterned,tubular,and porous nanofiber 166 8.5 Conclusion 168 References 168
9. Fiber membranes obtained by melt electrospinning for drug delivery 9.1 Introduction 173 9.2 Experimental 175 9.2.1 Materials 175 9.2.2 Processing of the blends 175 9.2.3 Melt electrospinning 175 9.3 Results and discussion 177 9.3.1 Fiber membrane morphology 177 9.3.2 Fourier transformed infrared spectroscopy 179 9.3.3 Differential scanning calorimetry 181 9.3.4 X-ray diffraction 183 9.3.5 Electron spin-resonance probe spectroscopy of polylactic acid (PLA)/polyhydroxybutyrate (PHB) electrospun mats 184 9.3.6 Impact of diffusion upon controlled drug release 187 9.4 Conclusion 191 References 191