注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術計算機/網(wǎng)絡圖形圖像、多媒體、網(wǎng)頁制作機器視覺與數(shù)字圖像處理基礎(HALCON版)

機器視覺與數(shù)字圖像處理基礎(HALCON版)

機器視覺與數(shù)字圖像處理基礎(HALCON版)

定 價:¥49.80

作 者: 王強 編著
出版社: 化學工業(yè)出版社
叢編項:
標 簽: 暫缺

ISBN: 9787122399847 出版時間: 2022-01-01 包裝: 平裝
開本: 16開 頁數(shù): 200 字數(shù):  

內(nèi)容簡介

  本書介紹了機器視覺系統(tǒng)的概念、原理、視覺系統(tǒng)組成以及數(shù)字圖像處理基礎,重點介紹了機器視覺系統(tǒng)的圖像采集系統(tǒng)、視覺圖像處理基礎算法以及機器視覺的典型應用案例,典型案例介紹了機器視覺的應用并采用halcon與c#混合編程的方式演示了如何搭建機器視覺系統(tǒng)。本書重在理論聯(lián)系實際,從圖像采集部分開始到數(shù)字圖像處理部分,除了介紹相關的理論知識外,結合具體的實際案例介紹halcon編程,提供了明確的使用方法。對每一種數(shù)字圖像處理算法在機器視覺系統(tǒng)中的應用,都通過實例說明了具體的應用方法和注意事項。本書中提供的實例圖像大部分來至于工業(yè)應用現(xiàn)場。每章均配有典型習題供練習使用,以加深對內(nèi)容的理解。本書既可作為高等學校機械電子、工業(yè)機器人、智能制造、自動化、計算機、電子信息、測控等專業(yè)的教材,也可供圖像處理及與機器視覺相關的科研和工程技術人員參考。

作者簡介

  王強,成都工業(yè)學院智能制造學院教師,副教授,一直從事圖像處理與機器視覺相關的研究和應用工作,主持實施多項與企業(yè)相關的機器視覺項目,主持或主研多項縱向課題研究,具有豐富的圖像處理和機器視覺實踐經(jīng)驗

圖書目錄

第1章  緒論 
1.1 機器視覺的概念 2
1.2 機器視覺的組成 2
1.3 機器視覺系統(tǒng)的特點 3
1.4 機器視覺系統(tǒng)的應用領域 4
1.4.1 在工業(yè)生產(chǎn)中的應用 4
1.4.2 在農(nóng)產(chǎn)品檢測中的應用 5
1.4.3 在醫(yī)學中的應用 6
1.4.4 在軍工以及制導方面的應用 6
1.4.5 在其他方面的應用 7
習題 7

第2章  機器視覺圖像采集 
2.1 光源 9
2.1.1 電磁輻射 9
2.1.2 光源類型 10
2.1.3 光源的形狀 11
2.1.4 光源照明方式 14
2.2 鏡頭 17
2.2.1 焦距 17
2.2.2 光圈 18
2.2.3 其他鏡頭參數(shù) 19
2.3 攝像機 19
2.3.1 CCD 芯片尺寸 20
2.3.2 分辨率 21
2.3.3 幀率與曝光時間 21
2.3.4 其他攝像機參數(shù) 22
習題 22
 
第3章  數(shù)字圖像處理基礎 
3.1 數(shù)字圖像的表示 25
3.2 數(shù)字圖像分類 25
3.2.1 彩色圖像 26
3.2.2 二值圖像 26
3.2.3 灰度圖像 27
3.2.4 索引圖像 29
3.3 數(shù)字圖像的格式 30
3.3.1 BMP 格式 30
3.3.2 JPEG 格式 30
3.3.3 PNG 格式 30
3.3.4 GIF 格式 30
3.3.5 TIFF 格式 31
3.4 數(shù)字圖像處理的一般步驟和方法 31
3.5 圖像性質 32
3.5.1 圖像的通道 32
3.5.2 圖像的分辨率 32
3.5.3 圖像的鄰域 32
3.5.4 圖像的連通域 33
3.5.5 像素之間的距離 33
3.5.6 圖像直方圖 34
3.5.7 圖像中的熵 35
3.5.8 圖像中的其他統(tǒng)計特征 36
習題 36
 
第4章  HALCON 簡介 
4.1 HALCON 介紹 39
4.2 HALCON 界面認識 39
4.2.1 菜單欄 41
4.2.2 工具欄 41
4.2.3 子窗口 42
4.3 HALCON 的數(shù)據(jù)類型 44
4.3.1 HALCON 的 Image 圖像 45
4.3.2 Region 區(qū)域 47
4.3.3 XLD 輪廓 49
4.3.4 Tuple 元組 50
4.4 HALCON 控制語句 55
4.4.1 if 條件語句 55
4.4.2 while 循環(huán)語句 56
4.4.3 for 循環(huán)語句 57
4.4.4 switch 分支條件語句 57
4.4.5 中斷語句 58
4.5 個機器視覺例子 59
習題 61

第5章  圖像增強 
5.1 灰度變換 63
5.1.1 線性變換 63
5.1.2 分段線性變換 64
5.1.3 對數(shù)變換 64
5.1.4 冪次變換 65
5.2 直方圖變換 67
5.2.1 直方圖均衡化 67
5.2.2 直方圖規(guī)定化 69
5.3 圖像平滑處理 72
5.3.1 圖像卷積運算概念 72
5.3.2 均值濾波 74
5.3.3 中值濾波 75
5.3.4 高斯濾波 76
5.3.5 雙邊濾波 77
5.4 代數(shù)運算 79
5.4.1 圖像加法 80
5.4.2 圖像減法 80
5.4.3 圖像乘法 80
5.4.4 圖像除法 81
5.5 圖像邏輯運算 82
習題 84
 
第6章  圖像幾何變換 
6.1 圖像插值 87
6.1.1 近鄰插值 87
6.1.2 雙線性插值 88
6.1.3 雙三次插值 89
6.2 仿射變換 90
6.3 透視變換 93
6.4 極坐標變換 94
習題 95

第7章  圖像銳化與邊緣檢測 
7.1 圖像梯度的概念 98
7.2 一階微分算子銳化與邊緣檢測 99
7.2.1 水平微分和垂直微分算子 99
7.2.2 Kirsch 算子 102
7.2.3 Sobel 算子 102
7.2.4 Prewitt 算子 103
7.2.5 Roberts 算子 104
7.3 二階微分算子 105
7.3.1 Laplacian 算子 106
7.3.2 LOG 算子 107
7.3.3 DOG 算子 107
7.4 Canny 算子 108
習題 109

第8章  數(shù)學形態(tài)學處理 
8.1 形態(tài)學運算基礎 112
8.2 二值圖像形態(tài)學運算 113
8.2.1 膨脹運算 114
8.2.2 腐蝕運算 115
8.2.3 開運算和閉運算 117
8.2.4 擊中擊不中變換 119
8.3 灰度圖像數(shù)學形態(tài)學運算 122
8.3.1 灰度圖膨脹與腐蝕 122
8.3.2 灰度圖開運算與閉運算 123
8.3.3 形態(tài)學梯度 124
8.3.4 頂帽 124
8.3.5 底帽 124
8.4 形態(tài)學運算的應用 126
8.4.1 二值圖形態(tài)學應用 126
8.4.2 灰度圖形態(tài)學應用 128
習題 131

第9章  圖像分割 
9.1 基于灰度值的閾值分割 134
9.1.1 全局閾值分割 134
9.1.2 局部閾值分割 138
9.2 區(qū)域生長算法 141
9.3 分水嶺算法 142
9.4 其他分割算法介紹 145
習題 146

第10章  圖像模板匹配 
10.1 圖像金字塔 148
10.1.1 高斯金字塔 148
10.1.2 拉普拉斯金字塔 149
10.2 基于灰度值的匹配 150
10.3 帶旋轉與縮放的匹配 156
10.4 基于邊緣的匹配 156
10.5 形狀匹配 157
10.6 基于特征的匹配 161
10.6.1 基于矩的匹配方法 161
10.6.2 基于特征點的匹配方法 163
習題 163

第11章  攝像機標定 
11.1 標定原理 166
11.1.1 坐標系之間的轉換關系 167
11.1.2 鏡頭畸變 169
11.2 標定過程 170
習題 175

第12章  機器視覺應用實例分析 
12.1 點陣字符分割與識別 177
12.1.1 確定字符區(qū)域 177
12.1.2 分割單個字符 178
12.1.3 字符訓練與識別 179
12.2 鏡片自動分揀 181
12.2.1 提取凹面鏡片區(qū)域 182
12.2.2 中心位置查找 183
12.3 布料瑕疵檢測 184
12.3.1 彩色圖像分解 185
12.3.2 瑕疵區(qū)域提取 186
12.4 HALCON 與 C#混合編程實例 188
12.4.1 圖像處理算法導出 188
12.4.2 系統(tǒng)設計與算法集成 189
習題 198

參考文獻 199
 

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號