注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)經(jīng)濟(jì)管理管理市場(chǎng)營(yíng)銷(xiāo)品牌戰(zhàn)略AI理論與技術(shù)

品牌戰(zhàn)略AI理論與技術(shù)

品牌戰(zhàn)略AI理論與技術(shù)

定 價(jià):¥198.00

作 者: 曹定愛(ài)
出版社: 科學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787030724458 出版時(shí)間: 2022-08-01 包裝: 平裝-膠訂
開(kāi)本: 128開(kāi) 頁(yè)數(shù): 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  對(duì)品牌價(jià)值進(jìn)行研究有其特殊性與困難之處,傳統(tǒng)上一般采用基于管理學(xué)或營(yíng)銷(xiāo)學(xué)的理論和方法進(jìn)行研究,難以充分考慮品牌系統(tǒng)的復(fù)雜性、廣泛性和多樣性。鑒于此,《品牌戰(zhàn)略AI理論與技術(shù)》以人工智能理論作為研究品牌的出發(fā)點(diǎn),將機(jī)器學(xué)習(xí)算法、神經(jīng)網(wǎng)絡(luò)、動(dòng)態(tài)隨機(jī)一般均衡理論和累積法參數(shù)估計(jì)方法與品牌學(xué)進(jìn)行有機(jī)結(jié)合,從經(jīng)濟(jì)學(xué)和人工智能視角,系統(tǒng)闡述和厘清人工智能算法在品牌發(fā)展戰(zhàn)略中的應(yīng)用方法,是一本關(guān)于方法論的著作?!镀放茟?zhàn)略AI理論與技術(shù)》既有完備清晰的數(shù)學(xué)推導(dǎo)、精妙新穎的研究想法,又有規(guī)范嚴(yán)謹(jǐn)?shù)膶W(xué)術(shù)過(guò)程,這使得《品牌戰(zhàn)略AI理論與技術(shù)》兼具學(xué)術(shù)價(jià)值與實(shí)際應(yīng)用價(jià)值。

作者簡(jiǎn)介

暫缺《品牌戰(zhàn)略AI理論與技術(shù)》作者簡(jiǎn)介

圖書(shū)目錄

目錄
前言 
第一篇 品牌及人工智能綜述 
第1章 品牌及品牌價(jià)值 3 
1.1 品牌的界定 3 
1.1.1 品牌及其相關(guān)概念 4 
1.1.2 與品牌相關(guān)的專(zhuān)業(yè)術(shù)語(yǔ) 9 
1.1.3 品牌可識(shí)別性、知名度、美譽(yù)度、忠誠(chéng)度 13 
1.2 品牌的價(jià)值 16 
1.2.1 品牌價(jià)值描述 16 
1.2.2 品牌定價(jià) 17 
1.2.3 品牌的使用價(jià)值 19 
1.2.4 品牌財(cái)務(wù)價(jià)值 22 
1.3 品牌發(fā)展戰(zhàn)略是國(guó)家經(jīng)濟(jì)發(fā)展和改革戰(zhàn)略 24 
1.3.1 黨和國(guó)家領(lǐng)導(dǎo)人重視和關(guān)心品牌發(fā)展 24 
1.3.2 國(guó)家政府部門(mén)對(duì)品牌建設(shè)高度重視 24 
1.3.3 實(shí)施品牌發(fā)展戰(zhàn)略需要全社會(huì)的關(guān)注 26 
1.3.4 品牌發(fā)展戰(zhàn)略的實(shí)施現(xiàn)狀 26 
1.4 品牌研究的三個(gè)層面 27 
第2章 人工智能算法綜述 31 
2.1 人工智能概覽 31 
2.1.1 人工智能在品牌研究中的應(yīng)用前景 32 
2.1.2 人工智能的五大核心技術(shù) 33 
2.2 機(jī)器學(xué)習(xí)的定義與常見(jiàn)任務(wù) 36 
2.2.1 機(jī)器學(xué)習(xí)的定義 36
2.2.2 機(jī)器學(xué)習(xí)的常見(jiàn)任務(wù) 40 
2.3 機(jī)器學(xué)習(xí)算法的分類(lèi) 42 
2.3.1 分類(lèi)與回歸 42 
2.3.2 監(jiān)督學(xué)習(xí)與無(wú)監(jiān)督學(xué)習(xí) 43 
2.4 機(jī)器學(xué)習(xí)發(fā)展歷程 44 
2.4.1 監(jiān)督學(xué)習(xí) 44 
2.4.2 聚類(lèi) 46 
2.4.3 數(shù)據(jù)降維 47 
2.4.4 概率圖模型 48 
2.4.5 深度學(xué)習(xí) 49 
2.4.6 強(qiáng)化學(xué)習(xí) 50 
2.5 性能度量 51 
2.5.1 分類(lèi)任務(wù) 51 
2.5.2 回歸任務(wù) 52 
2.6 幾種常見(jiàn)機(jī)器學(xué)習(xí)算法介紹 52 
2.6.1 監(jiān)督學(xué)習(xí)算法 52 
2.6.2 無(wú)監(jiān)督學(xué)習(xí)算法 57 
第二篇 神經(jīng)網(wǎng)絡(luò)算法在品牌發(fā)展戰(zhàn)略中的應(yīng)用 
第3章 神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí) 65 
3.1 神經(jīng)網(wǎng)絡(luò)算法的起源與特征 65 
3.1.1 神經(jīng)網(wǎng)絡(luò)的生物學(xué)起源 65 
3.1.2 神經(jīng)網(wǎng)絡(luò)特征 67 
3.2 神經(jīng)網(wǎng)絡(luò)算法的歷史沿革 68 
3.2.1 1970 年以前 69 
3.2.2 1970年至1982年 71 
3.2.3 1982年至2006年 71 
3.2.4 2006年至今 73 
3.3 神經(jīng)網(wǎng)絡(luò)算法數(shù)學(xué)基礎(chǔ) 75 
3.3.1 泰勒級(jí)數(shù)展開(kāi) 75 
3.3.2 梯度、黑塞矩陣、方向?qū)?shù) 77 
3.4 性能指標(biāo)優(yōu)化算法 78 
3.4.1 *速下降法 79 
3.4.2 牛頓法 80
3.4.3 共軛梯度法 81 
3.5 感知器與S型感知器 81 
3.5.1 感知器 81 
3.5.2 S型感知器 84 
3.5.3 感知器的梯度下降算法 85 
3.5.4 感知器算法設(shè)計(jì) 88 
3.6 相關(guān)算法的Python實(shí)現(xiàn) 89 
3.6.1 感知器算法的Python實(shí)現(xiàn) 89 
3.6.2 *速下降法的Python實(shí)現(xiàn) 89 
3.6.3 牛頓法的Python代碼實(shí)現(xiàn) 91 
3.6.4 共軛梯度法的Python實(shí)現(xiàn) 93 
第4章 多層前饋神經(jīng)網(wǎng)絡(luò)在品牌發(fā)展戰(zhàn)略中的應(yīng)用 95 
4.1 多層前饋神經(jīng)網(wǎng)絡(luò) 95 
4.1.1 深度學(xué)習(xí)與多層前饋神經(jīng)網(wǎng)絡(luò) 95 
4.1.2 多層前饋神經(jīng)網(wǎng)絡(luò)的特點(diǎn) 97 
4.2 反向傳播算法 98 
4.2.1 兩個(gè)階段 98 
4.2.2 性能度量指標(biāo) 98 
4.3 反向傳播算法的數(shù)理推導(dǎo) 100 
4.3.1 基本原理 100 
4.3.2 輸出層神經(jīng)元的梯度求解過(guò)程 103 
4.3.3 中間層神經(jīng)元的梯度求解過(guò)程 104 
4.3.4 反向傳播算法小結(jié) 105 
4.4 反向傳播算法計(jì)算過(guò)程實(shí)例 108 
4.4.1 品牌競(jìng)爭(zhēng)力評(píng)估網(wǎng)絡(luò)模型 108 
4.4.2 前向計(jì)算過(guò)程 109 
4.4.3 反向計(jì)算過(guò)程 110 
4.5 應(yīng)用案例分析:品牌競(jìng)爭(zhēng)力評(píng)估 111 
4.5.1 傳統(tǒng)評(píng)估方法 112 
4.5.2 品牌競(jìng)爭(zhēng)力評(píng)估的神經(jīng)網(wǎng)絡(luò)模型構(gòu)建 113 
4.6 反向傳播算法的Python實(shí)現(xiàn) 119 
第5章 神經(jīng)網(wǎng)絡(luò)的擴(kuò)展 125 
5.1 卷積運(yùn)算和卷積神經(jīng)網(wǎng)絡(luò) 125 
5.1.1 什么是卷積 126 
5.1.2 卷積神經(jīng)網(wǎng)絡(luò) 127
5.2 社交網(wǎng)絡(luò)模型算法 129 
5.2.1 社交網(wǎng)絡(luò)模型的定義和表示方法 129 
5.2.2 社交網(wǎng)絡(luò)的度量 133 
5.3 卷積神經(jīng)網(wǎng)絡(luò)的Python 代碼實(shí)現(xiàn) 135 
第三篇 動(dòng)態(tài)隨機(jī)一般均衡模型在品牌發(fā)展戰(zhàn)略中的應(yīng)用 
第6章 動(dòng)態(tài)隨機(jī)一般均衡模型理論基礎(chǔ) 145 
6.1 動(dòng)態(tài)隨機(jī)一般均衡模型簡(jiǎn)介 146 
6.1.1 歷史沿革 146 
6.1.2 模型特征 147 
6.2 動(dòng)態(tài)隨機(jī)一般均衡模型的分類(lèi) 148 
6.2.1 RBC模型 149 
6.2.2 新凱恩斯DSGE模型 152 
6.3 RBC模型的構(gòu)建方法 154 
6.3.1 家庭 154 
6.3.2 Hansen不可分勞動(dòng)模型 155 
6.3.3 企業(yè) 155 
6.3.4 RBC與貨幣 156 
6.3.5 真實(shí)摩擦 158 
6.4 新凱恩斯模型的構(gòu)建方法 160 
6.4.1 壟斷競(jìng)爭(zhēng) 160 
6.4.2 價(jià)格剛性 161 
6.4.3 工資剛性 164 
6.4.4 對(duì)新凱恩斯模型的總結(jié) 166 
6.5 對(duì)新凱恩斯模型的擴(kuò)展 167 
6.5.1 金融摩擦——金融加速器 167 
6.5.2 搜尋–匹配模型 170 
6.5.3 新開(kāi)放宏觀經(jīng)濟(jì)學(xué) 173 
6.6 線性方程組的求解 174 
6.6.1 對(duì)數(shù)線性化 174 
6.6.2 方程的求解 174 
6.7 參數(shù)的貝葉斯估計(jì) 176 
第7章 品牌發(fā)展戰(zhàn)略研究——基于動(dòng)態(tài)隨機(jī)一般均衡視角 178 
7.1 包含品牌資產(chǎn)特征的動(dòng)態(tài)隨機(jī)一般均衡模型構(gòu)建過(guò)程 179
7.1.1 家庭 179 
7.1.2 交錯(cuò)工資定價(jià) 181 
7.1.3 *終產(chǎn)品生產(chǎn)企業(yè) 183 
7.1.4 品牌資產(chǎn)生產(chǎn)企業(yè) 184 
7.1.5 商品生產(chǎn)企業(yè) 185 
7.1.6 商品生產(chǎn)企業(yè)的Calvo定價(jià)規(guī)則 186 
7.1.7 政府部門(mén) 186 
7.1.8 市場(chǎng)出清 187 
7.1.9 外生沖擊 187 
7.1.10 模型的對(duì)數(shù)線性化形式 187 
7.2 模型參數(shù)校準(zhǔn) 189 
7.3 貝葉斯估計(jì)與模型有效性分析 191 
7.3.1 參數(shù)的貝葉斯估計(jì) 191 
7.3.2 模型有效性檢驗(yàn) 193 
7.4 模型動(dòng)力學(xué)分析 196 
7.4.1 商品部門(mén)技術(shù)沖擊 196 
7.4.2 投資專(zhuān)有技術(shù)沖擊 198 
7.4.3 品牌部門(mén)技術(shù)沖擊 200 
7.5 品牌發(fā)展戰(zhàn)略傳導(dǎo)機(jī)制分析 203 
7.5.1 品牌生產(chǎn)技術(shù)沖擊標(biāo)準(zhǔn)差 204 
7.5.2 品牌資產(chǎn)產(chǎn)出彈性 205 
7.5.3 傳導(dǎo)機(jī)制分析 205 
7.6 關(guān)于建模的幾點(diǎn)思考 206 
7.7 外生沖擊與信號(hào)識(shí)別 209 
7.8 本章動(dòng)態(tài)模型求解MATLAB代碼 210 
第8章 品牌發(fā)展戰(zhàn)略研究——向金融市場(chǎng)與開(kāi)放經(jīng)濟(jì)擴(kuò)展 221 
8.1 金融加速器機(jī)制的發(fā)展 222 
8.2 金融加速器 224 
8.2.1 資本生產(chǎn)者 225 
8.2.2 企業(yè)家 226 
8.2.3 外生沖擊 231 
8.3 資本品市場(chǎng)和信貸市場(chǎng)分析 231 
8.3.1 資本品市場(chǎng) 231 
8.3.2 信貸市場(chǎng) 232 
8.3.3 金融系統(tǒng)影響宏觀經(jīng)濟(jì)的兩個(gè)途徑 233
8.4 封閉經(jīng)濟(jì)環(huán)境擴(kuò)展為開(kāi)放經(jīng)濟(jì)環(huán)境 234 
8.4.1 家庭 234 
8.4.2 品牌資產(chǎn)生產(chǎn)企業(yè) 237 
8.4.3 生產(chǎn)企業(yè) 239 
8.4.4 政府 241 
8.4.5 國(guó)際 243 
8.4.6 市場(chǎng)出清 244 
8.5 參數(shù)校準(zhǔn) 245 
8.5.1 金融加速器相關(guān)參數(shù) 245 
8.5.2 開(kāi)放經(jīng)濟(jì)相關(guān)參數(shù) 247 
8.6 參數(shù)的貝葉斯估計(jì)結(jié)果 249 
8.7 模型的有效性分析 252 
8.7.1 MCMC多變量診斷圖 252 
8.7.2 真實(shí)值與模擬值對(duì)比 253 
8.8 脈沖響應(yīng)分析 254 
8.8.1 美國(guó)財(cái)政支出沖擊 254 
8.8.2 美國(guó)稅收沖擊 258 
8.8.3 美國(guó)政策性沖擊對(duì)我國(guó)宏觀經(jīng)濟(jì)的影響總結(jié) 261 
8.9 金融加速器模型的動(dòng)態(tài)方程組 263 
8.10 開(kāi)放經(jīng)濟(jì)模型的動(dòng)態(tài)方程組 269 
第四篇 累積法在人工智能算法參數(shù)估計(jì)中的應(yīng)用 
第9章 累積和計(jì)算通式及其統(tǒng)計(jì)學(xué)特征 283 
9.1 累積法概覽 283 
9.2 累積和、計(jì)算通式及其應(yīng)用 286 
9.3 累積和的遞推公式 289 
9.4 基本累積和 291 
9.5 k階累積算子的統(tǒng)計(jì)學(xué)特征 292 
9.6 樣本的k階累積廣義樣本均值 295 
9.7 樣本的k階累積廣義均值估計(jì)量 298 
第10章 累積法參數(shù)估計(jì)理論 302 
10.1 普通累積法方程組 302 
10.2 兩種模型的關(guān)系 308 
10.3 β 的普通累積法估計(jì)及幾何中心估計(jì)法 310
10.4 普通累積法估計(jì)的性質(zhì)及誤差方差估計(jì) 314 
10.5 樣本的l階累積廣義均值的幾何中心與經(jīng)驗(yàn)回歸函數(shù) 320 
第11章 廣義累積法估計(jì)和累積法的工具變量法 324 
11.1 *小二乘法估計(jì)與廣義*小二乘法 324 
11.2 累積法線性模型與高斯–馬爾可夫模型 327 
11.3 累積法線性模型是廣義高斯–馬爾可夫模型 331 
11.4 工具變量法與累積法估計(jì) 332 
第12章 聯(lián)立方程組參數(shù)估計(jì)的累積法體系建立 336 
12.1 間接普通累積法估計(jì)理論 336 
12.1.1 間接普通累積法估計(jì)的基本步驟 337 
12.1.2 間接普通累積法估計(jì)的使用范圍 338 
12.1.3 間接普通累積法估計(jì)量的特性 338 
12.1.4 實(shí)例 339 
12.2 二階段普通累積法估計(jì) 343 
12.2.1 二階段普通累積法的建立 344 
12.2.2 二階段普通累積法估計(jì)法的步驟 345 
12.2.3 二階段普通累積法估計(jì)量的特征 345 
12.2.4 二階段累積法估計(jì)法的使用前提 346 
12.2.5 實(shí)例 346 
12.3 三階段普通累積法估計(jì) 351 
12.3.1 三階段普通累積法估計(jì)法的使用前提 351 
12.3.2 三階段普通累積法估計(jì)法參數(shù)估計(jì)量的特性 352 
12.3.

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)