注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)線性代數(shù)導(dǎo)引(英文版)

線性代數(shù)導(dǎo)引(英文版)

線性代數(shù)導(dǎo)引(英文版)

定 價:¥78.00

作 者: 金小慶 著
出版社: 科學(xué)出版社
叢編項:
標(biāo) 簽: 暫缺

ISBN: 9787030721631 出版時間: 2022-08-01 包裝: 平裝
開本: 16開 頁數(shù): 221 字?jǐn)?shù):  

內(nèi)容簡介

  線性代數(shù)是現(xiàn)代數(shù)學(xué)的基礎(chǔ)并廣泛應(yīng)用于科學(xué)和工程領(lǐng)域中。隨著計算機的發(fā)展,線性代數(shù)和計算科學(xué)緊密結(jié)合,它在互聯(lián)網(wǎng)領(lǐng)域,如網(wǎng)絡(luò)搜索、目標(biāo)識別、視頻圖像處理等領(lǐng)域也產(chǎn)生了重大的影響:線性代數(shù)極其重要的應(yīng)用之一就是Goolge的創(chuàng)建,超級復(fù)雜的排名算法就是在線性代數(shù)的輔助下創(chuàng)建的。線性代數(shù)是最富創(chuàng)造性的數(shù)學(xué)工具。 由澳門大學(xué)金小慶教授、劉璇、劉偉輝博士和杭州電子科技大學(xué)趙志副教授撰寫的《線性代數(shù)導(dǎo)引》一書共八章,包含線性方程組、矩陣、向量空間、特征值和特征向量、線性變換等。在最后一章,作者從書中的基本概念出發(fā),對最近提出的Böttcher-Wenzel 猜想給出了初等證明。附錄還初步討論了向量空間公理的獨立性。本書每章后都附有一定數(shù)量難度適宜的習(xí)題。 擁有此書,您與學(xué)好線性代數(shù)只有一步之遙。

作者簡介

暫缺《線性代數(shù)導(dǎo)引(英文版)》作者簡介

圖書目錄

Contents
Chapter 1 Linear Systems and Matrices 1
1.1 Introduction to Linear Systems and Matrices 1
1.1.1 Linear equations and linear systems 1
1.1.2 Matrices 3
1.1.3 Elementary row operations 4
1.2 Gauss-Jordan Elimination 5
1.2.1 Reduced row-echelon form 5
1.2.2 Gauss-Jordan elimination 6
1.2.3 Homogeneous linear systems 9
1.3 Matrix Operations 11
1.3.1 Operations on matrices 11
1.3.2 Partition of matrices 13
1.3.3 Matrix product by columns and by rows 13
1.3.4 Matrix product of partitioned matrices 14
1.3.5 Matrix form of a linear system 15
1.3.6 Transpose and trace of a matrix 16
1.4 Rules of Matrix Operations and Inverses 18
1.4.1 Basic properties of matrix operations 19
1.4.2 Identity matrix and zero matrix 20
1.4.3 Inverse of a matrix 21
1.4.4 Powers of a matrix 23
1.5  Elementary Matrices and a Method for Finding A.1 24
1.5.1 Elementary matrices and their properties 24
1.5.2 Main theorem of invertibility 26
1.5.3 A method for finding A.1 27
1.6 Further Results on Systems and Invertibility 28
1.6.1 A basic theorem 28
1.6.2 Properties of invertible matrices 29
1.7 Some Special Matrices 31
1.7.1 Diagonal and triangular matrices 32
1.7.2 Symmetric matrix 34
Exercises 35
Chapter 2 Determinants 42
2.1 Determinant Function 42
2.1.1 Permutation, inversion, and elementary product 42
2.1.2 Definition of determinant function 44
2.2 Evaluation of Determinants 44
2.2.1 Elementary theorems 44
2.2.2 A method for evaluating determinants 46
2.3 Properties of Determinants 46
2.3.1 Basic properties 47
2.3.2 Determinant of a matrix product 48
2.3.3 Summary 50
2.4 Cofactor Expansions and Cramer’s Rule 51
2.4.1 Cofactors 51
2.4.2 Cofactor expansions 51
2.4.3 Adjoint of a matrix 53
2.4.4 Cramer’s rule 54
Exercises 55
Chapter 3 Euclidean Vector Spaces 61
3.1 Euclidean n-Space 61
3.1.1 n-vector space 61
3.1.2 Euclidean n-space 62
3.1.3 Norm, distance, angle, and orthogonality 63
3.1.4 Some remarks 65
3.2 Linear Transformations from Rn to Rm 66
3.2.1 Linear transformations from Rn to Rm 66
3.2.2 Some important linear transformations 67
3.2.3 Compositions of linear transformations 69
3.3 Properties of Transformations 70
3.3.1 Linearity conditions 70
3.3.2 Example 71
3.3.3 One-to-one transformations 72
3.3.4 Summary 73
Exercises 74
Chapter 4 General Vector Spaces 79
4.1 Real Vector Spaces 79
4.1.1 Vector space axioms 79
4.1.2 Some properties 81
4.2 Subspaces 81
4.2.1 Definition of subspace 82
4.2.2 Linear combinations 83
4.3 Linear Independence 85
4.3.1 Linear independence and linear dependence 86
4.3.2  Some theorems 87
4.4 Basis and Dimension 88
4.4.1 Basis for vector space 88
4.4.2 Coordinates 89
4.4.3 Dimension 91
4.4.4 Some fundamental theorems 93
4.4.5 Dimension theorem for subspaces 95
4.5 Row Space, Column Space, and Nullspace 97
4.5.1 Definition of row space, column space, and nullspace 97
4.5.2 Relation between solutions of Ax = 0 and Ax=b 98
4.5.3 Bases for three spaces 100
4.5.4 A procedure for finding a basis for span(S) 102
4.6 Rank and Nullity 103
4.6.1 Rank and nullity 104
4.6.2 Rank for matrix operations 106
4.6.3 Consistency theorems 107
4.6.4 Summary 109
Exercises 110
Chapter 5 Inner Product Spaces 115
5.1 Inner Products 115
5.1.1 General inner products 115
5.1.2 Examples 116
5.2 Angle and Orthogonality 119
5.2.1 Angle between two vectors and orthogonality 119
5.2.2 Properties of length, distance, and orthogonality 120
5.2.3 Complement 121
5.3 Orthogonal Bases and Gram-Schmidt Process 122
5.3.1 Orthogonal and orthonormal bases 122
5.3.2 Projection theorem 125
5.3.3 Gram-Schmidt process 128
5.3.4 QR-decomposition 130
5.4 Best Approximation and Least Squares 133
5.4.1 Orthogonal projections viewed as approximations 134
5.4.2 Least squares solutions of linear systems 135
5.4.3 Uniqueness of least squares solutions 136
5.5 Orthogonal Matrices and Change of Basis. 138
5.5.1 Orthogonal matrices 138
5.5.2 Change of basis 140
Exercises 144
Chapter 6 Eigenvalues and Eigenvectors 149
6.1 Eigenvalues and Eigenvectors 149
6.1.1 Introduction to eigenvalues and eigenvectors 149
6.1.2 Two theorems concerned with eigenvalues 150
6.1.3 Bases for eigenspaces 151
6.2 Diagonalization 152
6.2.1 Diagonalization problem 152
6.2.2 Procedure for diagonalization 153
6.2.3 Two theorems concerned with diagonalization 155
6.3 Orthogonal Diagonalization 156
6.4 Jordan Decomposition Theorem 160
Exercises 162
Chapter 7 Linear Transformations 166
7.1 General Linear Transformations 166
7.1.1 Introduction to linear transformations 166
7.1.

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號