定 價(jià):¥89.00
作 者: | 潘清泉 |
出版社: | 清華大學(xué)出版社 |
叢編項(xiàng): | |
標(biāo) 簽: | 暫缺 |
ISBN: | 9787302630487 | 出版時(shí)間: | 2023-04-01 | 包裝: | 精裝 |
開本: | 16開 | 頁數(shù): | 字?jǐn)?shù): |
第1章引言
1.1研究背景與意義
1.1.1中子-光子耦合輸運(yùn)對(duì)屏蔽計(jì)算的重要性
1.1.2減方差方法對(duì)蒙特卡羅屏蔽計(jì)算的重要性
1.2國內(nèi)外研究現(xiàn)狀
1.2.1中子-光子耦合輸運(yùn)的理論發(fā)展和應(yīng)用
1.2.2減方差方法的研究歷史和發(fā)展現(xiàn)狀
1.2.3簡(jiǎn)化球諧函數(shù)法的理論研究和解法現(xiàn)狀
1.3本書研究?jī)?nèi)容
1.4本書組織結(jié)構(gòu)
第2章蒙特卡羅方法與減方差理論
2.1本章引論
2.2蒙特卡羅方法
2.2.1蒙特卡羅方法的數(shù)學(xué)基礎(chǔ)
2.2.2蒙特卡羅方法的程序?qū)崿F(xiàn)
2.3減方差理論
2.3.1傳統(tǒng)減方差方法
2.3.2先進(jìn)減方差方法
第3章中子-光子耦合輸運(yùn)再開發(fā)
3.1本章引論
3.2光子輸運(yùn)方法
3.2.1中子產(chǎn)生光子反應(yīng)
3.2.2光原反應(yīng)
3.2.3光核反應(yīng)
3.2.4光子核數(shù)據(jù)庫
3.2.5RMC中子-光子-電子耦合輸運(yùn)測(cè)試
3.3光子輸運(yùn)方法改進(jìn)和優(yōu)化
3.3.1康普頓散射的多普勒展寬
3.3.2深度耦合的光子輸運(yùn)方法
3.3.3預(yù)處理的光子輸運(yùn)方法
第4章通用減方差方法研發(fā)
4.1本章引論
4.2求解深穿透問題的局部減方差方法
4.2.1深穿透問題
4.2.2空間偏倚的自適應(yīng)減方差
4.2.3能量偏倚的自適應(yīng)減方差
4.2.4自適應(yīng)減方差方法在三維物理模型上的應(yīng)用
4.3最佳源偏倚的全局減方差方法
4.3.1分層抽樣方法
4.3.2組近似方法
4.3.3空間最佳源偏倚
4.3.4能量最佳源偏倚
第5章簡(jiǎn)化球諧函數(shù)法與堆芯計(jì)算程序NLSP3研制
5.1本章引論
5.2簡(jiǎn)化球諧函數(shù)法方法研究
5.2.1簡(jiǎn)化球諧函數(shù)法的數(shù)學(xué)意義
5.2.2傳統(tǒng)SP3方程
5.2.3嚴(yán)格SPN理論
5.3SP3方程的非線性迭代解法研究
5.3.1傳統(tǒng)非線性迭代法
5.3.2穩(wěn)定收斂的非線性迭代法
5.3.3堆芯計(jì)算程序NLSP3的研發(fā)
5.3.4數(shù)值驗(yàn)證結(jié)果
第6章基于NLSP3的全局減方差
6.1本章引論
6.2基于NLSP3的全堆均勻化方法研究
6.2.1全堆均勻化方法的理論基礎(chǔ)
6.2.2固定源計(jì)算模式的全堆均勻化方法
6.2.3全堆均勻化的計(jì)算結(jié)果
6.3基于NLSP3的混合蒙特卡羅方法
6.3.1基于NLSP3的源收斂加速
6.3.2基于NLSP3的全局減方差
第7章總結(jié)與展望
7.1本書總結(jié)
7.2研究展望
參考文獻(xiàn)
在學(xué)期間發(fā)表的學(xué)術(shù)論文
致謝
附錄AHBR2屏蔽計(jì)算基準(zhǔn)題
附錄B堆芯計(jì)算程序NLSP3的使用說明
附錄C3D-TAKEDA快堆輸運(yùn)基準(zhǔn)題
Contents
Chapter 1Introduction
1.1Research Background
1.1.1Significance of Neutron-Photon Coupling Calculation
1.1.2Significance of Variance Reduction Methods
1.2Research Actuality
1.2.1History of Neutron-Photon Coupling Calculations
1.2.2History of Variance Reduction Methods
1.2.3Histosy of Simplified Spherical Harmonic Method
1.3Research Contents
1.4Thesis Structure
Chapter 2Monte Carlo and Variance Reduction
2.1Chapter Introduction
2.2Monte Carlo Method
2.2.1Mathematical Background
2.2.2Program Implementation
2.3Theory of Variance Reduction
2.3.1Traditional Variance Reduction Methods
2.3.2Advanced Variance Reduction Methods
Chapter 3Redevelopment of Neutron-Photon Coupling
3.1Chapter Introduction
3.2Photon Transport
3.2.1Photon Produced by Neutron Reactions
3.2.2Photonatomic Physics
3.2.3Photonuclear Physics
3.2.4Photon Labriry
3.2.5Verification of Neutron-Photon-Electron Coupling
3.3Improvement of Photon Transport
3.3.1Doppler Broadening of Compton Scattering
3.3.2Deep-coupling Photon Transport
3.3.3Preprocessed Photon Transport
Chapter 4Study on General Variance Reduction Method
4.1Chapter Introduction
4.2Local Variance Reduction Method
4.2.1Deep-penetration Problem
4.2.2Space Biased Adaptive Variance Reduction Method
4.2.3Energy Biased Adaptive Variance Reduction Method
4.2.4Application of Adaptive Variance Reduction Method
4.3Global Variance Reduction Method
4.3.1Stratified Sampling
4.3.2Batch Method
4.3.3Spatial Source Biased Method
4.3.4Energy Source Biased Method
Chapter 5Development of NLSP3 Code
5.1Chapter Introduction
5.2Simplified Spherical Harmonic Method
5.2.1Mathematical Background
5.2.2Transitional SP3 Equation
5.2.3Rigorous SP3 Equation
5.3Nonlinear Iterative Method for SP3 Equation
5.3.1Tranditional Nonlinear Iterative Method
5.3.2Stable Nonlinear Iterartive Method
5.3.3The NLSP3 Code
5.3.4Numerical Verification
Chapter 6Variance Reduction Based on NLSP3 code
6.1Chapter Introduction
6.2Global Homogenization Based on NLSP3 code
6.2.1Mathematical Background
6.2.2Global Homogenization Based on Fixed-source Calculation
6.2.3Results of Global Homogenization
6.3Hybrid Monte Carlo Based on NLSP3 Code
6.3.1Source Acceleration Based on NLSP3 Code
6.3.2Variance Reduction Based on NLSP3 Code
Chapter 7Conclusion and Prospect
7.1Conclusion
7.2Prospect
Bibliography
Published Academic Papers and Achievements
Acknowledgement
Appendix AHBR2 Shielding Benchmark
Appendix BManual of NLSP3 Code
Appendix C3D-TAKEDA Benchmark