注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術(shù)自然科學數(shù)學一種基于混沌的非線性最優(yōu)化問題:作業(yè)調(diào)度問題(英文)

一種基于混沌的非線性最優(yōu)化問題:作業(yè)調(diào)度問題(英文)

一種基于混沌的非線性最優(yōu)化問題:作業(yè)調(diào)度問題(英文)

定 價:¥38.00

作 者: [埃],M.A.艾爾一薩爾巴吉
出版社: 哈爾濱工業(yè)大學出版社
叢編項:
標 簽: 暫缺

購買這本書可以去


ISBN: 9787576706789 出版時間: 2023-03-01 包裝: 平裝-膠訂
開本: 32開 頁數(shù): 字數(shù):  

內(nèi)容簡介

  本書展示了一種新的混合優(yōu)化方法來解決最重要的**化問題之一——非線性**化問題。本書共包含六章內(nèi)容,第一章提出了**化問題的數(shù)學模型;第二章致力于介紹遺傳算法的工作原理,并解釋了遺傳算法是如何應用到解**化問題之中的;第三章提出了解非線性**化問題的一個新算法;第四章提出了作業(yè)安排調(diào)度問題的結(jié)構(gòu),引入了作業(yè)安排調(diào)度問題的公式化;第五章的目的是實施解作業(yè)安排調(diào)度問題的新方法,并解釋了它的細節(jié);第六章為結(jié)論以及給未來研究者的幾點建議。

作者簡介

暫缺《一種基于混沌的非線性最優(yōu)化問題:作業(yè)調(diào)度問題(英文)》作者簡介

圖書目錄

List of Figures
List of Tables
Abstract
CHAPTER 1: A Survey on Related Topoes
1.1 Introduction
1.2 Mathematical Model of Optimization Problems
1.3 Classification of optimization problems
1.3.1 Classification based on existence of constraints
1.3.2 Classification based on nature of the design variables
1.3.3 Classification based on physical structure of the problem
1.3.4 Classification based on nature of the equations involved
1.3.5 Classification based on permissible values of the design variables
1.3.6 Classification based on deterministic nature of the variables
1.3.7 Classification based on separability of the functions
1.3.8 Classification based on number of the objective functions
1.4 Optimization Techniques
1.4.1 Classical Optimization Techniques
1.4.1.1 Nonlinear Programming
1.4.2 Advanced Techniques
1.4.2.1 Genetic algorithm (GA)
1.4.2.2 Simulated annealing (SA)
1.4.2.3 Neural network optimization
1.4.2.4 Tabu search (TS)
1.4.2.5 Ant colony optimization (ACO)
1.4.2.6 Particle swarm optimization (PSO)
1.4.2.7 Harmony search (HS)
1.4.2.8 Artificial bee colony (ABC)
CHAPTER 2: Genetic Algorithm
2.1 Introduction
2.2 Working Principle of GA
2.3 Genetic algorithm procedure for optimization problems
2.3.1 Encoding
2.3.2 Initial Population
2.3.3 Evaluation
2.3.4 Create new population
2.3.4.1 Selection
2.3.4.2 Crossover
2.3.4.3 Mutation
2.3.5 Repair
2.3.6 Migration
2.3.7 Termination Test
2.4 Genetic algorithm Parameters
2.4.1 Crossover probability
2.4.2 Mutation probability(Pro)
2.4.3 Population Size
2.5 Advantages and disadvantages of GA
2.5.1 Advantages of GA
2.5.2 Disadvantages of GA
CHAPTER 3: A Chaos-based Evolutionary Algorithm for General Nonlinear Programming Problems
3.1 Introduction
3.2 Chaos Theory
3.3 Chaotic maps
3.4 The proposed algorithm
3.4.1 Phase I: GA
3.4.2 Phase II : Chaotic local search
3.5 Experimental results
3.5.1 Test function
3.5.1.1 Unconstrained benchmark problems
3.5.1.2 Constrained benchmark problems
3.5.2 Performance Analysis Using Different Chaotic Maps
3.5.3 Performance Analysis using logistic map
3.5.4 Speed Convergence analysis
3.6 Conclusion
CHAPTER 4: Job Shop Scheduling Problems
4.1 Introduction
4.2 Scheduling Problem Types
4.3 Job shop scheduling problem structure
4.4 Job shop scheduling problem formulation
4.4.1 Mathematical representation of JSSP
4.4.2 Disjunctive graph
4.4.3 Gantt-Chart
4.5 Complexity of JSSP
4.6 Job shop scheduling solving techniques
4.6.1 Exact techniques
4.6.1.1 Mathematical techniques
4.6.1.2 Enumerative techniques
4.6.1.3 Decomposition strategies
4.6.2 Approximate techniques
4.6.2.1 Constructive Methods
4.6.2.2 Insertion Algorithms
4.6.2.3 Evolutionary Methods
4.6.2.4 Local Search Techniques
CHAPTER 5: Hybrid Genetic Algorithm for Job Shop Scheduling Problems
5.1 Introduction
5.2 The proposed algorithm (HGA)
5.2.1 Phase I: GA
5.2.2 Phase II: Local search
5.3 Experimental Results
5.3.1 Test Problems
5.3.2 Results and discnssion
5.4 Conclusion
CHAPTER 6: Conclusions and Future Work
6.1 Conclusions
6.2 Future Work
Bibliography
編輯手記

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號