注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)內(nèi)詣零流形映射的尼爾森數(shù)的阿諾索夫關(guān)系(英文)

內(nèi)詣零流形映射的尼爾森數(shù)的阿諾索夫關(guān)系(英文)

內(nèi)詣零流形映射的尼爾森數(shù)的阿諾索夫關(guān)系(英文)

定 價(jià):¥38.00

作 者: [比] 布拉姆·大·羅克 著
出版社: 哈爾濱工業(yè)大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

購(gòu)買這本書可以去


ISBN: 9787576706093 出版時(shí)間: 2023-01-01 包裝: 平裝-膠訂
開本: 16開 頁(yè)數(shù): 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  本書分為三個(gè)部分,第一部分內(nèi)容驗(yàn)證了內(nèi)諧零流形M的(連續(xù))自映射f:M→M的阿諾索夫關(guān)系,回顧了內(nèi)詣零流形的主要性質(zhì)和定義,還展示了內(nèi)詣零流形與可解流形是不同的;第二部分內(nèi)容給出了有兩種可能的方式去推廣阿諾索夫定理,第一種方式是尋找流形類,而不是詣零流形,這就使該關(guān)系對(duì)已知流形的所有連續(xù)映射都成立;第三部分內(nèi)容集中討論了低維內(nèi)詣流形,也就是4維內(nèi)詣流形,幾乎為每個(gè)比伯巴赫群提供了特殊比伯巴赫群(或內(nèi)詣零流形)的阿諾索夫關(guān)系的證明或反例。

作者簡(jiǎn)介

暫缺《內(nèi)詣零流形映射的尼爾森數(shù)的阿諾索夫關(guān)系(英文)》作者簡(jiǎn)介

圖書目錄

Preface
Part I Preliminaries
1 Maps of infra-nilmanifolds: an algebraic description
1.1 Lie groups
1.2 Infra-nilmanifolds
1.3 Maps of infra-nilmanifolds
2 The Anosov relation
2.1 Fixed point theory
2.1.1 The Lefschetz number
2.1.2 The Nielsen number
2.1.3 The Anosov relation
2.2 Fixed point theory on infra-nilmanifolds
Part II The results
3 Periodic sequences and infra-nilmanifolds with an odd order holonomy group
3.1 The Anosov theorem for infra-nilmanifolds with odd order holonomy group
3.2 Classes of maps for which the Anosov theorem hold
3.2.1 The Anosov relation for expanding maps
3.2.2 The Anosov relation for nowhere expanding maps
3.3 Infra-nilmanifolds are more complicated
4 Anosov diffeomorphisms
4.1 Algebraic characterization
4.2 Non-primitive fiat manifolds
4.2.1 Flat n-dinensional manifolds with first Betti number smaller than n - 2
4.2.2 Flat manifolds with first Betti number equal to n - 2
4.3 Primitive fiat manifolds
4.3.1 Primitive fiat manifolds in dimension n ) 6
4.3.2 Primitive fiat manifolds in dimension 6
5 Infra-nilmanifolds with cyclic holonomy group
5.1 Cyclic groups of matrices
5.2 The Anosov theorem for infra-nilmanifolds with cyclic holonomy group
5.3 The sharpness of the main result for fiat manifolds
6 Generalized Hantzsche-Wendt manifolds
6.1 Definition and properties
6.2 Orientable fiat GHW manifolds
Part III The Anosov theorem in small dimensions
7 Flat manifolds
7.1 General overview in dimension 3 and 4
7.2 Flat manifolds in dimension 4 with Z2 Z2 as holonomy group
7.3 Flat manifolds in dimension 4 with non-abelian holonomy group
8 Infra-nilmanifolds
8.1 Calculations on 4 dimensional infra-nilmanifolds
8.1.1 2-step nilpotent infra-nilmanifolds
8.1.2 3-step nilpotent infra-nilmanifolds
8.2 The 3-dimensional, 2-step infra-nilmanifolds
8.3 The 4-dimensional, 2-step infra-nilmanifolds
8.3.1 Abelian holonomy group
8.3.2 Non-abelian holonomy group
8.4 The 4-dimensional, 3-step infra-nilmanifolds
References
編輯手記

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)