注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)伽利略空間和偽伽利略空間中一些特殊曲線的幾何性質(zhì)

伽利略空間和偽伽利略空間中一些特殊曲線的幾何性質(zhì)

伽利略空間和偽伽利略空間中一些特殊曲線的幾何性質(zhì)

定 價(jià):¥48.00

作 者: [埃及]杜雅.法加爾
出版社: 哈爾濱工業(yè)大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787560393551 出版時(shí)間: 2022-01-01 包裝: 平裝-膠訂
開(kāi)本: 32開(kāi) 頁(yè)數(shù): 206 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  三大改善活動(dòng)機(jī)制簡(jiǎn)潔高效,是保障精益取得成果的重要抓手,更是精益管理活動(dòng)的重中之重。該機(jī)制是作者推行精益管理活動(dòng)20多年實(shí)踐精髓的總結(jié)。本書(shū)圍繞三大機(jī)制,將這套歷經(jīng)檢驗(yàn)、行之有效的方法系統(tǒng)地整理總結(jié)出來(lái)。全書(shū)共分五篇,分別對(duì)全員經(jīng)驗(yàn)改善活動(dòng)的定義、愿景、目標(biāo)、路徑和實(shí)戰(zhàn)事例等內(nèi)容進(jìn)行敘述,并闡述了全員推行精益改善的三大機(jī)制的目的和措施,后講述了課題改善中發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解決問(wèn)題的邏輯、路徑與方法。

作者簡(jiǎn)介

  杜雅·法加爾(Doaa Farghal),博士.她曾在埃及的蘇哈賈大學(xué)學(xué)習(xí),并于2009年從數(shù)學(xué)系畢業(yè)。其研究方向?yàn)槲⒎謳缀巍?/div>

圖書(shū)目錄

1 Basic Concepts and Previous Studies
1.1 Introduction
1.2 The three-dimensional Galilean space G
1.2.1 Curves in Galilean space G
1.2.2 Bishop frames
1.3 Natural geometry of ruled surfaces in G
1.3.1 Darboux frame of a curve lying on the ruled surface
of type I
1.3.2 Darboux frame of a curve lying on the ruled surface
of type III
1.4 Helices in G
1.5 Bertrand curves in G
1.6 Geometry ofthe pseudo—Galilean space G
1.6.1 Curves in pseudo-Galilean space
1.6.2 Bishop frames in Gi
1.7 Natural geometry of ruled surfaces in G
1.7.1 Darboux frame of a curve lying on a ruled surface in
G
1.8 Helices in G
1.9 Normal and rectifying curves in Gj
2 Spherical Indicatrices of Helices in Galilean Spaces
2.1 Introduction
2.2 Spherical images of special curves in Galilean space
2.2.1 A unit speed curve
2.2.2 Spherical curves of the position vector of an arbitrary
CUrVe
2.2.3 Bishop spherical images of an arbitrary curve
2.3 Example
2.4 Spherical curves in pseudo-Galilean space
2.4.1 Spherical indicatrices of an arbitrary curve
2.5 spherical images with Bishop frame
2.6 Spherical images with Bishop frame of a circular helix
2.7 Spherical images with Bishop frame of Salkowski curve
2.8 Spherical images with Bishop frame of Anti—Salkowski curve
2.9 Examples
3 Smarandache Curves of Helices in the Galilean 3-Space
3.1 Geonmtric prelinfinaries
3.2 Special Smarandac,he(turves in Galilean geometry
3.2.1 Smarandache curves of a unit speed curve
3.3 Relations among spherical indicatrices of SOUlC Smarandache curves
3.3.1 Smarandache curves of all arbitrary curve with respect to standard frame
3.4 Special Smarandache curves according to Darboux frame in G
3.5 Exmnples
3.6 Smaremdache curves of special curves iIl pseudo-Galilean geolnetry
3.6.1 Smarandache curves of aIl arbitrary curve
3.6.2 Special Slnarandache curves according to Darboux fraum
3.7 Exainples
4 Bertrand Curves in the Galilean and Pseudo—Galilean Spaces
4.1 Introductioll
4.2 Bertrand partner curves accoroding to Freimt fraiue
4.3 Bertrand curves according to Darboux franm in G3
4.4 Exainples
4.5 Bertrand curves ill pseudo-Oalilean geometry
4.6 Bertrand curve~according to Darboux flame in G3/1
4.7 Examples
5 Normal, Osculating and Rectifying Curves in Galilean Spaces
5.1 Introductiou
5.2 Bishop frame of the second type in G3
5.3 Associated curves according to Bishop fralne in G.
5.4 Associated curves in the pseudo-Galilean space G3/1
Bibliography
編輯手記
Copyright ? 讀書(shū)網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)