注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)一類混沌動力系統(tǒng)的分歧分析與控制:分歧分析與控制

一類混沌動力系統(tǒng)的分歧分析與控制:分歧分析與控制

一類混沌動力系統(tǒng)的分歧分析與控制:分歧分析與控制

定 價:¥38.00

作 者: [埃及]埃爾-哈提卜.蘇比.阿里.埃爾-加里卜
出版社: 哈爾濱工業(yè)大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

ISBN: 9787560398136 出版時間: 2022-01-01 包裝: 平裝-膠訂
開本: 32開 頁數(shù): 189 字?jǐn)?shù):  

內(nèi)容簡介

  本書是一部英文版的非線性科學(xué)方面的專著,內(nèi)容是20世紀(jì)中非常令人鼓舞的非線性科學(xué)。它不僅在科學(xué)和技術(shù)上對人類有非常大的震撼而且還在世界觀和方法論層面對世人造成了顛覆式的沖擊。本書介紹了三個不同類型的分歧的分析與數(shù)值的研究。類屬于局部分歧的是霍普夫分歧,另外兩個類型是同宿與異宿分歧,屬于全局分歧。還討論了兩個不同的帶時滯反饋控制的非線性動力系統(tǒng)中的分歧分析與混沌。

作者簡介

暫缺《一類混沌動力系統(tǒng)的分歧分析與控制:分歧分析與控制》作者簡介

圖書目錄

(I) Summary(II) Aim of the study(III) IntroductionChapter 1: Nonlinear Dynamical Systems and Preliminaries.1.1 Nonlinear dynamical systems1.1.1 Continuous dynamical systems1.1.2 Equilibrium points of dynamical system1.2 Attractor1.2.1 Strange attractor1.2.2 Limit cycle1.3 Bifurcations1.3.1 Saddle-node bifurcation1.3.2 Transcritical bifurcation1.3.3 The Pitchfork bifurcation1.3.4 Hopfbifurcation1.4 Global bifurcations1.4.1 A Homoclinic Bifurcation1.4.2 Heteroclinic Bifurcation1.5 Chaos1.6 Lyapunov exponents1.7 Time-delayed feedback method1.7.1 Hopfbifurcation in delayed systems1.7.2 Center manifold theoryChapter 2: LOCAL BIFURCATION On Hopfbifurcation of Liu chaotic system2.1 Introduction2.2 Dynamical analysis of the Liu system2.3 The first Lyapunov coefficient2.4 The Hopf-bifurcation analysis of Liu systemChapter 3: GLOBAL BIFURCATION Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems3.1 Introduction3.2 Homoclinic and Heteroclinic orbit3.3 Structure of the Lii system3.4 The existence ofheteroclinic orbits in the Lu3.4.1 Finding heteroclinic orbits3.4.2 The uniform convergence ofheteroclinic orbits series expansion3.5 Structure of the Zhou's system3.6 Existence of Si'lnikov-type orbits3.6.1 The existence ofheteroclinic orbits3.6.2 The uniform convergence ofheteroclinic orbits series expansion.3.7 The existence ofhomoclinic orbitsChapter 4: Si'lnikov Chaos of a new chaotic attractor from General Lorenz system family4.1 Introduction4.2 The novel system and its dynamical analysis4.3 The existence ofheteroclinic orbits in the novel system4.4 The uniform convergence of heteroclinic orbits series expansion4.5 The existence ofhomoclinic orbits4.6 The uniform convergence ofhomoclinic orbits series ExpansionChapter 5: Bifurcation Analysis and Chaos Control in Zhou's System and Schimizu-Morioka system with Delayed Feedback5.1 Introduction5.2 Bifurcation analysis of Zhou's system with delayed feedback force5.3 Direction and stability of Hopfbifurcation5.4 Numerical results5.5 Bifurcation Analysis and Chaos Control in Schimizu- Morioka Chaotic with Delayed Feedback5.5.1 Bifurcation analysis of Schimizu-Morioka system with delayed feedback force5.5.2 Direction and stability of Hopfbifurcation.5.5.3 Numerical resultsRecommendations: Bibliography編輯手記

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號