注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)全局優(yōu)化理論幾種算法的改進研究

全局優(yōu)化理論幾種算法的改進研究

全局優(yōu)化理論幾種算法的改進研究

定 價:¥59.00

作 者: 劉旭旺
出版社: 中國經(jīng)濟出版社
叢編項:
標(biāo) 簽: 暫缺

購買這本書可以去


ISBN: 9787513660549 出版時間: 2020-12-01 包裝:
開本: 16開 頁數(shù): 176 字數(shù):  

內(nèi)容簡介

  本書主要圍繞神經(jīng)網(wǎng)絡(luò)優(yōu)化、粒子群優(yōu)化方法和填充函數(shù)方法等全局優(yōu)化方法展開了深入研究,取得了系列研究成果,豐富和完善了全局優(yōu)化理論幾種算法的改進和應(yīng)用研究。首先,針對Hopfield網(wǎng)絡(luò)優(yōu)化,從優(yōu)化計算存在問題出發(fā),比較分析Hopfield網(wǎng)絡(luò)優(yōu)化和模擬退火優(yōu)化,找到了兩種算法的切入點,給出了嵌入式混合優(yōu)化算法SA—HNN的原理和實現(xiàn)步驟,數(shù)值仿真證明了SA—HNN混合優(yōu)化算法用于組合優(yōu)化的可行性,有一定工程實用價值。其次,針對粒子群優(yōu)化算法,以提高種群多樣度、**解精度和優(yōu)化效率為目標(biāo),把混沌機制融入粒子群優(yōu)化,提出了基于混沌的彈性粒子群全局優(yōu)化算法;同時,把經(jīng)典的梯度下降算法與上面提出的彈性修正粒子速度有機結(jié)合,互為補充,提出了基于梯度的彈性粒子群全局優(yōu)化方法,數(shù)值實驗證明了各改進算法的有效性和適用性。最后,針對填充函數(shù)方法,提出了一類新的無參數(shù)填充函數(shù),把混沌優(yōu)化與填充函數(shù)方法有機結(jié)合,提出了基于混沌和填充函數(shù)的全局優(yōu)化方法,數(shù)值實驗驗證了算法的優(yōu)越性。

作者簡介

  劉旭旺,男,副教授,1983年3月生,河南省漯河人。2013年7月于東北大學(xué)信息科學(xué)與工程學(xué)院畢業(yè),獲得系統(tǒng)工程專業(yè)工學(xué)博士學(xué)位?,F(xiàn)任河南大學(xué)MBA教育中心辦公室主任,同時還在河南大學(xué)商學(xué)院電子商務(wù)系任教。主要研究方向為復(fù)雜系統(tǒng)建模與優(yōu)化、電子商務(wù)、行為運作管理、管理系統(tǒng)工程等。研究成果已在 Electronic Commerce Research and Applications , IEEE Systems Journal 及《管理科學(xué)學(xué)報》《系統(tǒng)工程學(xué)報》《運籌學(xué)學(xué)報》《東北大學(xué)學(xué)報》《系統(tǒng)仿真學(xué)報》等雜志上發(fā)表學(xué)術(shù)論文20余篇,其中SSCI 收錄1篇,SCI 收錄2篇,EI 收錄5篇。主持教育部人文社科基金1項、河南省教育廳等廳級項目3項,參與國家自然科學(xué)基金2項。

圖書目錄

第l章 緒論
1.1 課題的背景和意義
1.2 國內(nèi)外研究現(xiàn)狀
1.3 本研究主要T作
1.4 本研究的內(nèi)容結(jié)構(gòu)
1.5 本書內(nèi)容出版資助
第2章 全局優(yōu)化的基本理論
2.1 優(yōu)化問題簡介
2.2 優(yōu)化模型的建立
2.3 優(yōu)化問題的分類
2.4 凸集與凸函數(shù)
2.5 優(yōu)化算法簡介
2.5.1 優(yōu)化算法的基本迭代
2.5.2 解決優(yōu)化問題的基本算法
2.5.3 優(yōu)化算法的收斂問題
2.5.4 搜索方向確定
2.5.5 算法步長確定
2.6 局部與全局
2.7 全局優(yōu)化問題的特點
2.7.1 優(yōu)化方法的發(fā)展
2.7.2 全局優(yōu)化問題的性質(zhì)
2.8 智能優(yōu)化
第3章 相關(guān)優(yōu)化算法及理論
3.1 神經(jīng)網(wǎng)絡(luò)與組合優(yōu)化
3.1.1 神經(jīng)網(wǎng)絡(luò)
3.1.2 組合優(yōu)化問題
3.2 模擬退火優(yōu)化算法
3.2.1 模擬退火算法
3.2.2 模擬退火算法步驟
3.2 .火算法的關(guān)鍵技術(shù)
3.2.4 模擬退火算法的收斂性
3.3 混沌優(yōu)化
3.3.1 混沌的產(chǎn)生
3.3.2 昆沌的定義
3.3.3 一般混沌映射特性
3.3.4 典型混沌映射點集的概率分布
3.3.5 E沌優(yōu)化概述
3.3.6 其他的混沌優(yōu)化算法
3.4 粒子群優(yōu)化算法的原理
3.4.1 描述PSO 7關(guān)鍵術(shù)語
3.4.2 基本粒子群優(yōu)化算法
3.4.3 標(biāo)準(zhǔn)粒子群優(yōu)化算法
3.4.4 粒子群優(yōu)化算法的研究綜述
3.4.5 與其他智能算法的比較分析
3.4.6 粒子群算法存在的問題
3.4.7 粒子群優(yōu)化算法小結(jié)
第4章 基于模擬退火的Hopfield網(wǎng)絡(luò)優(yōu)化研究
4.1 基于Hopfield反饋網(wǎng)絡(luò)的優(yōu)化策略
4.1.1 Hopfield反饋網(wǎng)絡(luò)優(yōu)化的原理
4.1.2 基于Hopfield網(wǎng)絡(luò)模型優(yōu)化的程
4.1.3 基于Hopfield網(wǎng)絡(luò)模型優(yōu)化的缺陷
4.2 SA-HNN混合算法的提出
4.3 SA-HNN混合算法的分析與設(shè)計
4.4 SA-HNN混合算法實現(xiàn)步驟及整體流程圖
4.4.1 SA-HNN~jE合算法函數(shù)優(yōu)化實現(xiàn)步驟
4.4.2 SA-HNN§合算法解決組合優(yōu)化的具體步驟
4.4.3 SA-HNN£合算法實現(xiàn)組合優(yōu)化整體流程圖
4.5 SA-HNN混合算法在函數(shù)優(yōu)化中的案例分析
4.6 SA-HNN混合算法在組合優(yōu)化中的案例分析
4.6.1 1行商問題(1\

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號