注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)教育/教材/教輔外語(yǔ)英語(yǔ)讀物智慧地鐵車(chē)站系統(tǒng):數(shù)據(jù)科學(xué)與工程(英文版)

智慧地鐵車(chē)站系統(tǒng):數(shù)據(jù)科學(xué)與工程(英文版)

智慧地鐵車(chē)站系統(tǒng):數(shù)據(jù)科學(xué)與工程(英文版)

定 價(jià):¥168.00

作 者: 劉輝
出版社: 中南大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787548747864 出版時(shí)間: 2022-03-01 包裝:
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 272 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  地鐵作為重大民生工程,因其運(yùn)量大、快速準(zhǔn)時(shí)、綠色低碳等優(yōu)點(diǎn),已成為國(guó)內(nèi)外解決大城市交通問(wèn)題的重要選擇。隨著“以人為本、綠色節(jié)能”等理念越發(fā)深入人心,下一代地鐵系統(tǒng)尤其是地鐵車(chē)站系統(tǒng)將面臨來(lái)自多方面的全新挑戰(zhàn)。例如,在乘客服務(wù)方面,將更加關(guān)注乘客出行的安全性、有序性和便捷性,提供更加人性化的服務(wù);在車(chē)站環(huán)境方面,希望進(jìn)一步提高舒適性,改善車(chē)站運(yùn)行和服務(wù)性能;在能源管理方面,地鐵系統(tǒng)需要更加適應(yīng)節(jié)能減排戰(zhàn)略,加強(qiáng)能源節(jié)約與資源優(yōu)化。人工智能、大數(shù)據(jù)為代表的新一代信息技術(shù)將不斷推動(dòng)上述面臨挑戰(zhàn)的解決進(jìn)程,讓地鐵車(chē)站系統(tǒng)越來(lái)越“智慧”,加快完成地鐵車(chē)站系統(tǒng)的未來(lái)信息化技術(shù)變革。本書(shū)入選“十四五”時(shí)期國(guó)家重點(diǎn)出版物出版專項(xiàng)規(guī)劃項(xiàng)目。本書(shū)以未來(lái)憧憬的“智慧地鐵車(chē)站系統(tǒng)”為目標(biāo),對(duì)智慧地鐵車(chē)站系統(tǒng)的人類、環(huán)境和能源3個(gè)關(guān)鍵層面開(kāi)展大數(shù)據(jù)融合和應(yīng)用,能應(yīng)用于智慧地鐵車(chē)站系統(tǒng)的客流引導(dǎo)、污染預(yù)警、運(yùn)量預(yù)測(cè)、能效提升等多個(gè)最急需的場(chǎng)景。本書(shū)提供了完整的實(shí)際應(yīng)用案例。本書(shū)不僅可作為人工智能、大數(shù)據(jù)、軌道交通等領(lǐng)域工程技術(shù)與科學(xué)研究人員的參考書(shū),也能作為研究生、本科生和留學(xué)生等學(xué)生的學(xué)習(xí)用書(shū)。

作者簡(jiǎn)介

  劉輝,現(xiàn)任中南大學(xué)二級(jí)教授、博導(dǎo)、交通院副院長(zhǎng)。主要研究方向?yàn)檐壍澜煌ㄅc人工智能。獲中德雙博士學(xué)位(交通運(yùn)輸工程/自動(dòng)化工程)、德國(guó)教授文憑。入選國(guó)家萬(wàn)人計(jì)劃青年拔尖人才、全球2%頂尖科學(xué)家榜單、愛(ài)思唯爾中國(guó)高被引學(xué)者。獲國(guó)家科技進(jìn)步獎(jiǎng)一等獎(jiǎng)(排15)、教育部自然科學(xué)獎(jiǎng)二等獎(jiǎng)(排1)、中國(guó)交通運(yùn)輸協(xié)會(huì)科技進(jìn)步獎(jiǎng)一等獎(jiǎng)(排1)等;獲施普林格-自然“中國(guó)新發(fā)展獎(jiǎng)”、中國(guó)智能交通協(xié)會(huì)科技領(lǐng)軍人才獎(jiǎng)、中國(guó)交通運(yùn)輸協(xié)會(huì)首屆青年獎(jiǎng)、湖南省青年科技獎(jiǎng)、寶鋼優(yōu)秀教師獎(jiǎng)等。

圖書(shū)目錄

Chapter 1 Exordium
1.1 Overview of data science and engineering
1.2 Framework of smart metro station systems
1.3 Human and smart metro station systems
1.4 Environment and smart metro station systems
1.5 Energy and smart metro station systems
1.6 Scope of this book
References
Chapter 2 Metro traffic flow monitoring and passenger guidance
2.1 Introduction
2.2 Description of metro traffic flow data
2.3 Prediction of metro traffic flow based on Elman neural network
2.4 Prediction of metro traffic flow based on deep echo state network
2.5 Passenger guidance strategy based on prediction results
2.6 Conclusions
References
Chapter 3 Individual behavior analysis and trajectory prediction
3.1 Introduction
3.2 Description of individual GPS data
3.3 Preprocessing of individual GPS data
3.4 Prediction of GPS trajectory based on optimized extreme learning machine
3.5 Prediction of GPS trajectory based on optimized support vector machine
3.6 Analysis of individual behavior based on prediction results
3.7 Conclusions
References
Chapter 4 Clustering and anomaly detection of crowd hotspot regions
4.1 Introduction
4.2 Description of crowd GPS data
4.3 Preprocessing of crowd GPS data
4.4 Clustering of crowd hotspot regions based on K-means
4.5 Clustering of crowd hotspot regions based on DBSCAN
4.6 Anomaly detection of crowd hotspot regions based on Markov chain
4.7 Conclusions
References
Chapter 5 Monitoring and deterministic prediction of station humidity
5.1 Introduction
5.2 Description of station humidity data
5.3 Deterministic prediction of station humidity based on optimization ensemble
5.4 Deterministic prediction of station humidity based on stacking ensemble
5.5 Evaluation of deterministic prediction results
5.6 Conclusions
References
Chapter 6 Monitoring and probabilistic prediction of station temperature
6.1 Introduction
6.2 Description of station temperature data
6.3 Interval prediction of station temperature based on quantile regression
6.4 Interval prediction of station temperature based on kernel density estimation
6.5 Evaluation of probabilistic prediction results
6.6 Conclusions
References
Chapter 7 Monitoring and spatial prediction of multi-dimensional air pollutants
7.1 Introduction
7.2 Description of multi-dimensional air pollutants data
7.3 Dimensionality reduction of multi-dimensional air pollutants data
7.4 Spatial prediction of air pollutants based on Long Short-Term Memory
7.5 Evaluation of spatial prediction results
7.6 Conclusions
References
Chapter 8 Time series feature extraction and analysis of metro load
8.1 Introduction
8.2 Description of metro load data
8.3 Feature extraction of metro load based on statistical methods
8.4 Feature extraction of metro load based on transform methods
8.5 Feature extraction of metro load based on model
8.6 Conclusions
References
Chapter 9 Characteristic and correlation analysis of metro load
9.1 Introduction
9.2 The theoretical basis of correlation analysis
9.3 Description of metro load data
9.4 Correlation analysis of metro load and environment data
9.5 Correlation analysis of metro load and operation data
9.6 Comprehensive correlation ranking of metro load and related data
9.7 Conclusions
References
Chapter 10 Metro load prediction and intelligent ventilation control
10.1 Introduction
10.2 Description of short-term and long-term metro load data
10.3 Short-term prediction of metro load data based on ANFIS model
10.4 Long-term prediction of metro load data based on SARIMA model
10.5 Performance evaluation of prediction results
10.6 Intelligent ventilation control based on prediction results
10.7 Conclusions
References

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)