正文

志第十四 歷三

舊唐書 作者:五代·劉昫


  開元《大衍歷經(jīng)》

  演紀(jì)上元閼逢困敦之歲,距今開元十二年甲子歲,歲積九千六百六十六萬一千七百四十算。

  大衍步中朔第一  大衍通法:三千四十。

  策實:一百一十一萬三百四十三。

  揲法:八萬九千七百七十三?! 绶ǎ壕湃f一千三百。

  策馀:一萬五千九百四十三。

  用差:一萬七千一百二十四。

  掛限:八萬七千一十八。

  三元之策:一十五;馀,六百六十四;秒,七?! ∷南笾撸憾?;馀,一千六百一十三。

  中盈分:一千三百二十八;秒,十四。

  爻數(shù):六十。

  象統(tǒng):二十四。

  推天正中氣 以策實乘入元距所求積算,命曰中積分。盈大衍通法得一,為積日。不盈者,為小馀。爻數(shù)去積日,不盡日為大馀。數(shù)從甲子起算外,即所求年天正中氣冬至日及小馀也。

  求次氣 因天正中氣大小馀,以三元之策及馀秒加之。其秒盈象統(tǒng),從小馀。小馀滿大衍通法,從大馀。大馀滿爻數(shù),去之。命如前,即次氣恆日及馀秒。凡率相因加者,下有馀秒,皆以類相從。而滿其法,則迭進(jìn)之,用加上位。日盈爻數(shù),去之也。

  推天正合朔 以揲法去中積分。其所不盡,曰歸馀之卦。以減積積分,馀為朔積分。乃如大衍通法而一,為日。不盡,為小馀。日盈爻數(shù),去之。不盈者,為大馀。命以甲子算外,即所求年天正合朔經(jīng)日及小馀也。

  求次朔及弦望 因天正經(jīng)朔大小馀,以四象之策及馀加之。數(shù)除如法,即次朔經(jīng)日及馀也。又自經(jīng)朔加一象之日七及馀一千一百六十三少,得上弦。倍之,得望。參之,得下弦。四之,是謂一揲,復(fù)得后月之朔。凡四分一為少,二為半,三為太,四為全。加滿其前數(shù),去之,從上位。綜中朔盈虛分,累益歸馀之卦,每其月閏衰。凡歸馀之卦五萬六千七百六十以上,其歲有閏。因考其閏衰,滿卦限以上,其月及合置閏?;蛴羞M(jìn)退,皆以定朔無中氣裁焉。

  推沒日 置有沒之氣恆小馀,以象統(tǒng)乘之,內(nèi)秒分,參而伍之,以減策實。馀滿策馀,為日。不滿,為沒馀。命起也。凡恆氣小馀,不滿大衍通法,如中盈分半法已下,為有沒之氣。  推滅日 以有滅之朔經(jīng)小馀,減大衍通法。馀,倍參伍乘之,用減滅法。馀,滿朔虛分,為日。不滿,為滅馀。命起經(jīng)朔初日算外,即合朔后滅日也。凡經(jīng)朔小馀不滿朔虛分者,為有滅之朔。

  大衍步發(fā)斂術(shù)第二

  天中之策:五;馀,二百二十二;秒,三十一。秒法:七十二。

  地中之策:十八;馀,一百六十五;秒,八十六。秒法:一百二十?! ∝懟拗撸喝?;馀,一百三十二;秒,一百三。秒法:如前。

  辰法:七百六十。

  刻法:三百四。

  推七十二候 各因中節(jié)大小馀命之,即初候日也。以天中之策及馀秒加之,數(shù)除如法,即次候日。又加,得末候日。凡發(fā)斂,皆以恆氣。

  推六十卦 各因中氣大小馀命之,公卦用事日也。以地之策及馀秒累加之,數(shù)除如法,各次卦用事日。若以貞晦之策加諸候卦,得十二節(jié)之初外卦用事日。

  推五行用事 各因四立大小馀命之,即春木、夏火、秋金、冬水首用事日也。以貞晦之策及馀秒,減四季中氣大小馀,即其月土始用事日。凡抽加減而有秒者,母若不齊,當(dāng)令母互乘子。乃加減之。母相乘為法。

  推發(fā)斂去朔 各置其月閏衰,以大衍通法約之,為日。不盡為馀,即其月中氣去經(jīng)朔日算及馀秒也。求卦候者,各以天地之策及馀秒累加減之,中氣之前以減,中氣之后以加。得去經(jīng)朔日算及馀秒。

  推發(fā)斂加時 各置其小馀,以六爻乘之,如辰法而一,為半辰之?dāng)?shù)。不盡者,五之,三刻法除之,為刻。又不盡者,三約為分。此分滿刻法為刻,若令滿象積為刻者,即置不盡之?dāng)?shù),十之,十九而一,為分。命起子半算外,各其加時所在辰刻及分也。  大衍步日躔術(shù)第三  乾實:一百一十一萬三百七十九太。周天度:三百六十五。虛分七百七十九太。

  歲差:三十六太。

  求每日先后定數(shù) 以所入氣并后氣盈縮分,倍六爻乘之,綜兩氣辰數(shù)除,入之,為末率。又列二氣盈縮分,皆倍六爻乘之,各如辰數(shù)而一,以少減多,馀為氣差。加減末率,至后以差加,分后以差減。為初率。倍氣差,亦六爻乘之,復(fù)綜兩氣辰數(shù)以除之,為日差。半之,以加減初末,各為定率。以日差累加減氣初定率,至后以差減,分后以差加。為每日盈縮分。乃馴積之,隨所入氣日加減氣下先后數(shù),各其日定。冬至后為陽復(fù),在盈加之,在縮減之。夏至后為陰復(fù),在縮加之,在盈減之。距四正前一氣,在陰陽變革之際,不可相并,皆因前末為初率。以氣差至前加之,分前減之,為末率。馀依前率,各得所求。其朓朒亦放此求之,各得每日定數(shù)。其分不滿全數(shù),母又每氣不同,當(dāng)退法除之,用百為母,半已上從一,已下棄之。下求軌漏,馀分不滿準(zhǔn)此。

  推二十四氣定日 冬夏至皆在天地之中,無有盈縮。馀各以氣下先后數(shù),先減后加恆氣小馀。滿若不足,進(jìn)退其日。命從甲子算外,各其定日及馀秒也。凡推日月行度及軌漏交蝕,并依定氣。若注歷即依恆氣也?! ⊥破剿匪南蟆∫远庀嗑嘀盟废彝?jīng)日大小馀,以所入定氣大小馀及秒分減之,各其所入定氣日算及馀秒也。若大馀少不足減者,加爻數(shù),然后減之。其弦望小馀有少半太,當(dāng)以爻乘之,乃以氣秒分減,退一加象統(tǒng)。小馀不足減,退日算一,加大衍通法也。

  求朔弦望經(jīng)日入朓朒 各置其所入定氣日算及馀秒。減日算一,各以日差乘而半之,以加減其氣初定率,前少,加之;前多,減之。以乘其所入定氣日算及馀秒。凡除者,先以母通全,內(nèi)子,乃相乘,母相乘除之也。若忽微之?dāng)?shù)煩多而不甚相校者,過半收為全,不盈半法,棄之。所得以損益朓朒積,各為其日所入朓朒定數(shù)。若非朔望有交者,以十二乘所入日算。三其小馀,辰法除而從之。以乘損益率,如定氣辰數(shù)而一。所得以損益朓朒積,各為定數(shù)也?! 〕嗟浪薅?br />
  右北方七宿九十八度虛分七百七十九太

  右西方七宿八十一度

  右東方七宿七十五度

  前皆赤道度。其畢、觜、參及輿鬼四宿度數(shù),與古不同,今并依天以儀測定,用為常數(shù)。纮帶天中,儀極攸憑,以格黃道也。推黃道,準(zhǔn)冬至歲差所在,每距冬至前后各五度為限。初數(shù)十二,每限減一,盡九限,數(shù)終于四。殷二立之際,一度少強(qiáng),依平。乃距春分前、秋分后,初限起四,每限增一,盡九限,終于十二,而黃道交復(fù)。計春分后、秋分前,亦五度為限,初數(shù)十二,盡九限,數(shù)終于四。殷二立之際,一度少強(qiáng),依平。乃距夏至前后,初限起四,盡九限,終于十二。皆累裁之,以數(shù)乘限度,百二十而一,得度。不滿者,十二除為分。若以十除,則大分。十二為母,命以太半少及強(qiáng)弱。命曰黃赤道差數(shù)。二至前后,各九限,以差減赤道度,為黃道度。二分前后,各九限,以差加赤道度,為黃道度。若從黃道度反推赤道,二至前后各加之,二分前后須減之?! ↑S道宿度

  右北方九十七度六虛之差十九太

  右西方八十二度半

  右南方一百一十度半

  右東方七十五度少

  前皆黃道度。其步日行月與五星出入,循此。求此宿度,皆有馀分。前后輩之成少、半、太,準(zhǔn)為全度。若上考古下驗將來,當(dāng)據(jù)歲差。每移一度,各依術(shù)算,使得當(dāng)時宿度及分,然可步日月五星,知其犯守也。

  推日度 以乾實去中積分。不盡者,盈大衍通法為度。不滿,為度馀。命起赤道虛九,去分。不滿宿算外,即所求年天正冬至加時日所在度及馀也。以三元之策累加之,命宿次如前,各得氣初日加時赤道宿度。

  求黃道日度 以度馀減大衍通法。馀以冬至日躔之宿距度所入限乘之,為距前分。置距度下黃赤道差,以大衍通法乘之,減去距前分。馀,滿百二十除,為定差。不滿者,以象統(tǒng)乘之。復(fù)除,為秒分。乃以定差及秒減赤道宿度。馀,依前命之,即天正冬至加時所在黃道宿度及馀也。

  求次定氣 置歲差,以限數(shù)乘之,滿百二十除,為秒分。不盡為小分。以加于三元之策秒分,因累而裁之,命以黃道宿次去之,各得定氣加時日躔所在宿及馀也。

  求定氣初日夜半日所在度 各置其氣定小馀,副之,以乘其日盈縮分,滿大衍通法而一,盈加縮減其副,用減其日時度馀,命如前,各其日夜半日躔行在。求次日,各因定氣初日夜半度,累加一策,乃以其日盈縮分,盈加縮減度馀,命以宿次,即半日所在度及馀也。

  大衍步月離術(shù)第四

  轉(zhuǎn)終分:六百七十萬一千二百七十九?! ∞D(zhuǎn)終日:二十七;馀,一千六百八十五;秒,七十九?! ∞D(zhuǎn)法:七十六。

  轉(zhuǎn)秒法:八十。

  推天正經(jīng)朔入轉(zhuǎn) 以轉(zhuǎn)終分去朔積分,不盡,以秒法乘,盈轉(zhuǎn)終分又去之,馀如秒法一而入轉(zhuǎn)分。不盡為秒。入轉(zhuǎn)分滿大衍通法,為日。不滿為馀。命日算外,即所求年天正經(jīng)朔加時入轉(zhuǎn)日及馀秒。

  求次朔入轉(zhuǎn) 因天正所入轉(zhuǎn)差日一、轉(zhuǎn)馀二千九百六十七、秒分一,盈轉(zhuǎn)終日馀秒者去之。數(shù)除如前,即次日經(jīng)朔加時所入??忌舷孪彝?,如求經(jīng)朔四象術(shù),循變相加,若以經(jīng)朔望小馀減之,各其日夜半所入轉(zhuǎn)日及馀秒。

  求朔弦望入朓朒定數(shù) 各朔其所入日損益而半之,為通率。又二率相減為率差。前多者,以入馀減大衍通法,馀乘率差,盈大衍通法得一,并率差而半之。前少者,半入馀,乘率差,亦以大衍通法除之,為加時轉(zhuǎn)率。乃半之,以損益加時所入,馀為轉(zhuǎn)馀。其轉(zhuǎn)馀,應(yīng)益者,減法;應(yīng)損者,因馀。皆以乘率差,盈大衍通法得一,加于通率。轉(zhuǎn)率乘之,大衍通法約之,以朓減朒加轉(zhuǎn)率為定率。乃以定率損益朓朒積為定數(shù)。其后無同率者,亦因前率,益者以通率為初數(shù),半率差而減之。應(yīng)通率,其損益入馀,進(jìn)退日者,分為二日,隨馀初末如法求之,所得并以損益轉(zhuǎn)率。此術(shù)本出《皇極歷》,以究算術(shù)之微變。若非朔望有交者,直以入馀乘損益,如大衍通法而一,以損益朓朒為定數(shù),各得所求。

  七日初:二千七百一,約為大分八。末:三百三十九,約為大分一。

  十四日初:二千三百六十三,約為大分七。末:六百七十七,約為大分二?! 《蝗粘酰憾Ф模s為大分六。末:一千一十六,約為大分三。

  二十八日初:一千六百八十六,約為大分五。末:一千三百五十四,約為大分四。

  右以四象約轉(zhuǎn)終日及馀,均得六日二千七百一分。就全數(shù)約為大分,是為之八分。以減法,馀為末數(shù)。乃四象馴變相加,各其所當(dāng)之日初末數(shù)也。視入轉(zhuǎn)馀,如初數(shù)以下者,加減損益,因循前率;如初數(shù)以上,則反其衰,歸于后率云。

  求朔弦望定日及馀 以入氣、入轉(zhuǎn)朓朒定數(shù),同名相從,異名相消。乃以朓減朒加四象經(jīng)小馀。滿若不足,進(jìn)大馀。命以甲子算外,各其定日及小馀。干名與后朔葉同者,月大。不同者,?。粺o中氣者,為閏月。凡言夜半者,皆起晨前子正之中。若注歷觀弦望定小馀,不盈晨初馀數(shù)者,退一日。其望,小馀雖滿此數(shù),若有交蝕,虧初起在晨初已前者,亦如之。又月行九道遲疾,則三大二小。以日行盈縮,累增損之,則容有四大三小,理數(shù)然也。若俯循常儀,當(dāng)察加時早晚,隨其所近而進(jìn)退之,使不過三小。其正月朔,若有交加時正見者,消息前后一兩月,以定大小,令虧在晦二。

  推定朔弦望夜半日所在度 各隨定氣次日以所直日度及馀分命焉。若以五星相加減者,以四約度馀。乃列朔弦望小馀,副之,以乘其日盈縮分,如大衍通法而一,盈加縮減其副,以加其日夜半度馀,命如前,各其日加時日躔所次。

  推月九道度 凡合朔所交,冬在陰歷,夏在陽歷,月行青道。冬、夏至后,青道半交在春分之宿,殷黃道東。立冬、夏后,青道半交在立春之宿,殷黃道東南。至所沖之宿亦如之也。冬在陽歷,夏在陰歷,月行白道。冬至夏至后,白道半交在秋分之宿,殷黃道西。立北。至所沖之宿亦如之也。春在陽歷,秋在陰歷,月行硃道。春、秋分后,硃道半交在夏至之宿,殷黃道南。立春立秋后,硃道半交在立夏之宿,殷黃道西南。至所沖之宿亦如之也。春在陰歷,秋在陽歷,月行黑道。春、秋分后,黑道半交在冬至之宿,殷黃道北。立春立秋后,黑道半交在立冬之宿,殷黃道東北。至所沖之宿亦如之也。四序離為八節(jié),至陰陽之始交,皆以黃道相會,故月有九行。各視月交所入七十二候,距交初黃道日每五度為限。交初交中同。亦初數(shù)十二,每限減一,數(shù)終于四,乃一度強(qiáng),依平。更從四起,每限增一,終于十二,而至半交,其去黃道六度。又自十二,每限減一,數(shù)終于四,亦一度強(qiáng),依平。更從四起,每限增一,終于十二,復(fù)與日軌相會。各累計其數(shù),以乘限度,二百四十而一,得度。不滿者,二十四除,為分。若以二十除之,則大分。十二為母,命以半太及強(qiáng)弱也。為月行與黃道差數(shù)。距半交前后各九限,以差數(shù)為減;距正交前后各九限,以差數(shù)為加。此加減是出入六度,單與黃道相交之?dāng)?shù)也。若交赤道,則隨氣遷變不恆。計去冬至夏至以來候數(shù),乘黃道所差,十八而一,為月行與赤道差數(shù)。凡日以赤道內(nèi)為陰,赤道外為陽;月以黃道內(nèi)為陰,黃道外為陽。故月行宿度入春分交后行陰歷,秋分交后行陽歷,皆為同名;若入春分交后行陽歷,秋分交后行陰歷,皆為異名。其在同名,以差數(shù)為加者加之,減者減之;若在異名,以差數(shù)為加者減之,減者加之。皆以增損黃道度為九道定數(shù)。

  推月九道平交入氣 各以其月恆中氣,去經(jīng)朔日算及馀秒,加其月經(jīng)朔加時入交泛日及馀秒,乃以減交終日及馀秒,其馀即各平交入其月恆中氣日算及馀秒也。滿三元之策及馀秒則去之,其馀即平交入后月恆節(jié)氣日算及馀秒。因求次交者,以交終日及馀秒加之。滿三元之策及馀秒,去之。不滿者,為平交入其氣日算及馀秒。各以其氣初先后數(shù)先加、后減其入馀。滿若不足,進(jìn)退日算,即平交入定氣日算及馀秒也。

  求平交入氣朓朒定數(shù) 置所入定氣日算,倍六爻乘之,三其小馀,辰法除而從之,以乘其氣損益率,如定氣辰數(shù)而一,所得以損益其氣朓朒積為定數(shù)也。

  求平交入轉(zhuǎn)朓朒定數(shù) 置所入定氣馀,加其日夜半入轉(zhuǎn)馀,以乘其日損益率,滿大衍通法而一,所得以損益其日朓朒積,乃以交率乘之,交數(shù)而一,為定數(shù)。

  求正交入氣 置平交入氣及入轉(zhuǎn)朓朒定數(shù),同名相從,異名相消。乃以朓減、朒加平交入氣馀,滿若不足,進(jìn)退日算,即為正交入定氣日算及馀也。

  求正交加時黃道宿度 置正交入定氣馀,副之,乘其日盈縮分,滿大衍通法而一,所得以盈加縮減其副,以加其日夜半日度,即正交加時所在黃度及馀也。

  求正交加時月離九道宿度 以正交加時度馀,減大衍通法。馀以正交之宿距度所入限數(shù)乘之,為距前分。置距度下月道與黃道差,以大衍通法乘之,減去距前分,馀滿二百四十除,為定差。不滿者,一退為秒。以定差及秒加黃道度,馀,仍計去冬至夏至以來候數(shù),乘定差,十八而一,所得依名同異而加減之,滿若不足,進(jìn)退其度,命如前,即正交加時月離所在九道宿度及馀也?! ⊥贫ㄋ废彝訒r月所在度 各置其日加時日躔所在,變從九道,循次相加。凡合朔加時月行潛在日下,與太陽同度,是為離象。凡置朔弦望加時黃道日度,以正交加時所在黃道宿度減之,馀以加其正交九道宿度,命起正交宿度算外,即朔弦望加時所當(dāng)九道宿度也。其合朔加時若非正交,則日在黃道,月在九道,各入宿度,雖多少不同,考其去極,若應(yīng)準(zhǔn)繩,故云月行潛在日下,與太陽同度。

  以一象之度九十一、馀九百五十四、秒二十二半為上弦,兌象。倍之而與日沖,得望,坎象。參之,得下弦,震象。各以加其所當(dāng)九道宿度,秒盈象統(tǒng)從馀,馀滿大衍通法從度。命如前,各其日加時月所在度及馀秒也。綜五位成數(shù)四十,以約度馀,為分。不盡者,因為小分也?! ⊥贫ㄋ芬拱肴朕D(zhuǎn) 恆視經(jīng)朔夜半所入,若定朔大馀有進(jìn)退者,亦加減轉(zhuǎn)日,否則因經(jīng)朔為定。徑求次定朔夜半入轉(zhuǎn),因前定朔夜半所入,大月加轉(zhuǎn)差日二,小月加日一,轉(zhuǎn)馀皆一千三百五十四秒分一。數(shù)除如前,即次月定朔夜半所入?! ∏蟠稳铡±奂右蝗眨ッ?,各其夜半所入轉(zhuǎn)日及馀秒。

  求每日月轉(zhuǎn)定度 各以夜半入轉(zhuǎn)馀,乘列衰,如大衍通法而一,所得以進(jìn)加退減其日轉(zhuǎn)分,為月每所轉(zhuǎn)定分,滿轉(zhuǎn)法為度也。

  求朔弦望定日前夜半月所在度 各半列衰,減轉(zhuǎn)分。退者,定馀乘衰,以大衍通法除,并衰而半之;進(jìn)者,半定馀乘衰,定以大衍通法除,皆加所減。乃以定馀乘之,盈大衍通法得一,以減加時月度及分。因夜半準(zhǔn)此求轉(zhuǎn)分以加之,亦得加時月度。若非朔望有交,直以定小馀乘所入日轉(zhuǎn)交分,如大衍通法而一,以減其日時月度,亦得所求。

  求次日夜半月度 各以其日轉(zhuǎn)定分加之,分滿轉(zhuǎn)法從度,命如前,即次日夜半月所在度及分。

  推月晨昏度 各以所入轉(zhuǎn)定分乘其日夜漏,倍百刻除,為晨分。以減轉(zhuǎn)定分,馀為昏分。分滿轉(zhuǎn)法,從度。以加夜半度,望前以昏加,望后以晨加。各得其日晨昏月所在度及分。

  大衍步軌漏第五

  爻統(tǒng):一千五百二十。

  象積:四百八十。

  辰刻:八;刻分,一百六十。

  昏明刻:各二;刻分,二百四十。

  求每日消息定衰 各置其氣消息衰,依定氣日數(shù),每日以陟降率陟減降加其分,滿百從衰,不滿為分。各得每日消息定衰及分。其距二分前后各一氣之外,陟降不等,各每以三日為一限,損益如后。

  雨水初日:降七十八。初限每日損十二,次限每日損八,次限每日損三,次限每日損二,末限每日損一。

  清明初日:陟一。初限每日益一,次限每日益二,次限每日益三,次限每日益八,末限每日益十九。

  處暑初日:降九十九。初限每日損十九,次限每日損八,次限每日損三,次限每日損二,末限每日損一。  寒露初日:陟一。初限每日益一,次限每日益二,次限每日益三,次限每日益八,末限每日益十二。

  求前件四氣 置初日陟降率,每日依限次損益之,各為每日率。乃遞以陟減降加其氣初日消息衰分,亦得每日定衰及分也。

  推戴日之北每度晷數(shù) 南方戴日之下,正中無晷。自戴日之北一度,乃初數(shù)一千三百七十九。從此起差,每度增一,終于二十五度。又每度增二,終于四十度。又每度增六,終于四十四度,增六十八。每度增二,終于五十五度。又每度增十九,終于六十度,度增一百六十。又每度增三十三,終于六十五度。又每度增三十六,終于七十度。又每度增三十九,終于七十二度,增二百六十。又度增四百四十,又度增一千六十,又度增一千八百六十,又度增二千八百四十,又度增四千,又度增五千三百四十,而各為每度差。因累其差以遞加初數(shù),滿百為分,分滿十為寸,各為每度晷差。又每度晷差數(shù)。  求陽城日晷每日中常數(shù) 各置其氣去極度,以極去戴日下度五十六,盈分八十二減半之,各得戴日之北度數(shù)及分。各以其消息定衰戴日北所直度分之晷差,滿百為分,分滿十為寸,各為每日晷差。乃遞以息減消加其氣初晷數(shù),得每日中晷常數(shù)也。

  求每日中晷定數(shù) 各置其日所在氣定小馀,以爻統(tǒng)減之,馀為中后分。置前后分,以其日晷差乘之,如大衍通法而一,為變差。乃以變差加減其日中晷常數(shù),冬至后,中前以差減,中后以差加。夏至后,中前以差加,中后以差減。冬至一日有減無加,夏至一日有加無減。各得每日中晷定數(shù)。

  求每日夜半漏定數(shù) 置消息定衰,滿象積為刻,不滿為分。各遞以息減消加其氣初夜半漏,各得每日夜半漏定數(shù)。  求晨初馀數(shù) 置夜半定漏全刻,以九千一百二十乘之,十九乘刻分從之,如三百而一,所得為晨初馀數(shù),不盡為小分。

  求每日晝夜漏及日出入所在辰刻 各倍夜半之漏,為夜刻。以減百刻,馀為晝刻。減晝五刻以加夜,即晝?yōu)橐娍?,夜為沒刻。半沒刻以半辰刻加之,命起子初刻算外,即日出辰刻。以見刻加之,命如前,即日入辰刻。置夜刻以五除之,得每更差刻,又五除之,得每籌差刻。以昏刻加日入辰刻,得甲夜初刻。又以更籌差加之,得次更一籌之?dāng)?shù)。以次累加,滿辰刻去之,命如前,即得五夜更籌所當(dāng)辰及分也。其夜半定漏,亦名晨初夜刻?! ∏竺咳拯S道去極定數(shù) 置消息定衰,滿百為度,不滿為分,各遞以息減消加其氣初去極度,各得每日去極定數(shù)。

  求每日距中度定數(shù) 置消息定衰,以一萬二千三百八十六乘之,如一萬六千二百七十七而一,為每日度差。差滿百為度,不滿為分。各遞以息加消減其氣初距中度,各得每日距中度定數(shù)。倍距中度以減周天度,五而一,所得為每更度差。

  求每日昏明及每更中宿度所臨 置其日所在赤道宿度,以距中度加之,命宿次如前,即得其日昏中所臨宿度。以每更差度加之,命如前,即乙夜初中所臨宿度及分也。

  求九服所在每氣初日中晷常數(shù) 置氣去極度數(shù)相減,各為生氣消息定數(shù),因測所在冬夏至日晷長短,但測至即得,不必要須冬至。于其戴日之北度及分晷數(shù)中,校取長短,同者便為所在戴日北度數(shù)及分。氣各以消定數(shù)加減之,因冬至后者每氣以減,因夏至后者每氣以加。各得每氣戴日北度數(shù)及分。各因其氣所直度分之晷數(shù)長短,即各為所在每定氣初日中晷常數(shù)。其測晷有在表南者,亦據(jù)其晷尺寸長短,與戴日北每度晷數(shù)同者,因取其所直之度,去戴日北度數(shù),反之,為去戴日南度,然后以消息定數(shù)加減?! ∏缶欧跁円孤┛獭《闹粮饔谒谙滤远ó?dāng)處晝夜刻數(shù)。乃相減,為冬夏至差刻。半之,以加減二至?xí)円箍虜?shù),加夏至、減冬至。為春秋分定日晝夜刻數(shù)。乃置每氣消息定數(shù),以當(dāng)處二至差刻數(shù)乘之,如二至去極差度四十七分,八十而一,所得依分前后加減二分初日晝夜漏刻,春分前秋分后,加夜減晝;春分后秋分前,加晝減夜。各得所在定氣初日晝夜漏刻數(shù)。求次日者,置每日消息定衰,亦以差刻乘之,差度而一,所得以息減消加其氣初漏刻,各得所求。其求距中度及昏明中宿日出入所在,皆依陽城法求,仍以差度而今有之,即得也。

  又術(shù) 置所在春秋分定日中晷常數(shù),與陽城每日晷數(shù)校取同者,因其日夜半漏,即為所在定春秋分初日夜半漏。求馀氣定日,每以消息定數(shù),依分前后加減刻分。春分前以加,分后以減;秋分前以減,分后以加。滿象積為刻,不滿為分,各為所在定氣初日夜半定漏?! ∏蟠稳铡∫韵⒍ㄋヒ狸柍欠ㄇ笾吹?。此術(shù)究理,大體合通。但高山平川,視日不等。校其日晷,長短乃同??计淙章嗌賾覄e。以茲參課,前術(shù)為審也。  大衍步交會術(shù)第六

  交終:八億二千七百二十五萬一千三百二十二?! 〗恢校核娜f一千三百六十二;秒,五千六百六十一。

  終日:二十七;馀,六百四十五;秒,一千三百二十二。

  中日:十三;馀,一千八百四十二;秒,五千六百六十一。

  朔差日:二;馀,九百六十七;秒,八千六百七十八。

  望差日:一;馀,四百八十三;秒,九千三百三十九。

  望數(shù)日:十四;馀,二千三百二十六;秒,五十。

  交限日:十二;馀,一千三百五十八;秒,六千三百二十二。

  交率:三百四十三。

  交數(shù):四千三百六十九。

  辰法:七百六十。

  秒分法:一萬。

  推天正經(jīng)朔入交 以交終去朔積分,不盡,以秒分法乘。盈交終,又去之。馀如秒法而一,為入交分。不盡,為秒。入交分滿大衍通法,為日;不滿,為馀。命日算外,即所求年天正經(jīng)朔加時入交泛日及馀秒。

  求次朔入交 因天正所入,加朔差日及馀秒,盈終日及馀秒者,去之。數(shù)除如前,即次月經(jīng)朔加時所入。

  求望 以望數(shù)日及馀秒加之,去命如前,即得所求。若以經(jīng)朔望小馀減之,各其日夜半所入交泛日及馀秒。

  求定朔夜半入交 恆視經(jīng)朔望夜半所入,定朔望大馀。有進(jìn)退者,亦加減交日。否則,因經(jīng)為定,各得所求。求次定朔夜半入交:因前定朔夜半所入,大月加交差日二,月小加日一,馀皆二千三百九十四、秒八千六百七十八。求次日:累加一百,數(shù)除如前,各其夜半所入交泛日及馀秒。

  求朔望入交常日 各以其日入氣朓朒定數(shù),朓減朒加其入交泛,馀滿大衍通法從日,即為入交常及馀秒。

  求朔望入交定日 各置其日入轉(zhuǎn)朓朒定數(shù),以交率乘之,如交數(shù)而一。所得以朓減朒加入交常,馀數(shù)如前,即為入交定日及馀秒。

  求月交入陰陽歷 恆視其朔望入交定日及馀秒,如中日及馀秒已下者,為月入陽歷,已上者,以中日及馀秒去之,馀為月入陰歷。

  求四象六爻每度加減分及月去黃道定數(shù) 以其爻加減率與后爻加減率相減,為前差。又以后爻率與次后爻率相減,為后差。二差相減,為中差。置所在爻并后爻加減率,半中差以加而半之,十五而一,為爻末率,國為后爻初率。每以本爻初末率相減,為爻差。十五而一,為度差。半之,以加減初率,少象減之,老象加之。為定初率。每次度差累加減之,少象以差減,老象以差加。各得每度加減定分。乃修積其分,滿百二十為度,各為每度月去黃道度數(shù)及分。其四象,初爻無初率,上爻無末率,皆倍本爻加減率,十五而一。所得各以初末率減之,皆互得其率。馀依術(shù)算,各得所求?! ∏笏吠拱朐滦腥腙庩柖葦?shù) 各置其日夜半入轉(zhuǎn)日及馀秒,馀以其日夜半入交定日及馀秒減之也,其秒母不等,當(dāng)循率相通,然后減之,如不足減,即轉(zhuǎn)終日及一馀秒,然后減之。馀為定交初日夜半入轉(zhuǎn)日及馀秒。乃以定交初日夜半入馀與其日夜半入馀,各乘其日轉(zhuǎn)定分,如大衍通法而一。所得滿轉(zhuǎn)法為度,不滿為分。各以加其日轉(zhuǎn)積度及分,乃相減,其馀即為其夜半月行入陰陽度數(shù)及分也。轉(zhuǎn)求次日,但以其日轉(zhuǎn)定分加之,滿轉(zhuǎn)法為度,即得。

  求朔望夜半月行入四象度數(shù) 置其日夜半入陰陽度數(shù)及分,以一象之度九十除之。若以小象除之,則兼除差度一、度分一百六、大分十三、小分十四,訖,然以次象除之。所得以少陽、老陽、少陰、老陰為次,命起少陽算外,即其日夜半所入象度數(shù)及分也。先以三十乘陰陽度分,十九而一,為度分。乘又除,為小分。然以象度及分除之。

  求朔望夜半月行入六爻度數(shù) 置其日夜半所入象度數(shù)及分,以一爻之度一十五除之。所得命起其象初爻算外,即以其日夜半所入爻度數(shù)及分也。其月行入少象初爻之內(nèi),皆為沾近黃道度。當(dāng)朔望則有虧蝕。求入蝕限:其入交定日及馀秒,如望差已下交限已上者,為入蝕限。望入蝕限,則月蝕;朔入蝕限,月在陰歷則日蝕。入限,如望差已下,為交后。交限已上者,以減中日及馀,為交前。置交前后定日及馀秒通之,為去交前后定分。置去交定分,以十一乘之,如二千六百四十三除之,為去交度數(shù)。不盡,以大衍通法乘之,復(fù)除為馀。大抵去交十三度以上,雖入蝕限,為涉交數(shù)微,光影相接,或不見蝕。  求月蝕分 其去交定分七百七十九已下者,皆蝕既。已上者,以交定分減望差,馀以一百八十三約之。盡半已下,為半弱;已上,為半強(qiáng)。命以十五為限,得月蝕之大分。

  求月蝕所起 月在陰歷,初起東南,甚于正南,復(fù)于西南。月在陽歷,初起東北,甚于正北,復(fù)于西北。其蝕十二分已上者,皆起于正東,復(fù)于正西。此皆據(jù)南方正午而論之,若蝕于馀方者,各隨方面所在,準(zhǔn)此取正,而定其蝕起復(fù)也。

  求月蝕用刻 置月蝕之大分。五已下,因增三。十已下,因增四。十已上,因增五。其去交定分五百二十已下,又增半。二百六十已下,又增半。各為泛用刻率。  求每日差積定數(shù) 以所入氣并后氣增損差,倍六爻乘之,綜兩氣辰數(shù)除之,為氣末率。又列二氣增損差,皆倍六爻乘之,各如辰數(shù)而一。少減多,馀為氣差。加減末率,冬至后以差減,夏至后以差加。為初率。倍氣差,亦倍六爻乘之,復(fù)綜兩氣辰數(shù)以除之,為日差。半之,以加減初末,各為定率。以日差累加減氣初定率,冬至后以差加,夏至后以差減。為每日增損差。乃循積之,隨所入氣日加減氣下差積,各其日定數(shù)。其二至之前一氣,皆后無同差,不可相并,各因前末為初率。以氣差冬至前減,夏至前加,為末率。馀依算術(shù),各得所求也。  陰歷:

  蝕差:一千二百七十五。

  蝕限:二千五百二十四。

  或限:三千六百五十九。

  陽歷:

  蝕限:一百三十五?! 』蛳蓿壕虐倨呤?。

  求蝕差及諸限定數(shù) 各置其差、限,以蝕朔所入氣日下差積,陰歷減之,陽歷加之,各為蝕定差及定限。

  求陰歷陽歷的蝕或蝕 其陰歷去交定分滿蝕定差已上,為陰歷蝕。不滿者,雖在陰歷,皆類同陽歷蝕也。其去交定分滿蝕定限已下者,其蝕的見?;蛳抟韵抡?,其蝕或見或不見。

  求日蝕分 陰歷蝕者,置去交定分,以蝕定差減之,馀一百四已下者,皆蝕既。已上者,以一百四減之,其馀以一百四十三約之,其入或限者,以一百五十二約之。半已下為半弱,半已上為半強(qiáng),以減十五,馀為日蝕之大分。其同陽歷蝕者,但去交定分,少于蝕定差六十已下者,皆蝕既。六十已上者,置去交定分,以陽歷蝕定限加之,以九十約之。其陽歷蝕者,直置去交定分,亦以九十約之。其入或限者,以一百四十三約之。半已下為半弱,半已上為半強(qiáng),命以十五為限,亦得日蝕之大分。

  求日蝕所起 月在陰歷,初起西北,甚于正北,復(fù)于東北。月在陽歷,初起西南,甚于正南,復(fù)于東南。其蝕十二分已上,皆起正西,復(fù)于正東。此亦據(jù)南方正午而論之。

  求日蝕用刻 置所蝕之大分,皆因增二。其陰歷去交定分多于蝕定差七十已上者,又增三十五;已下者,又增半。其同陽歷去交定分少于蝕定差二十已下者,又增半;四十已下者,又增半少。各為泛月刻半率。

  求日月蝕甚所在辰 置去交定分,以交率乘之,二十乘交數(shù)除之,所得為差。其月道與黃道同名者,以差加朔望定小馀;異名,以差減朔望定小馀,置馀定馀。如求發(fā)斂加時術(shù)入之,即蝕甚所在辰刻及分也。其望甚辰月當(dāng)沖蝕?! ∏筇澇鯊?fù)末 置日月蝕泛用刻率,副之,以乘其日入轉(zhuǎn)損益率,如大衍通法而一。所得應(yīng)朒者,依其損益;應(yīng)朓者,損加益減其副,為定用刻數(shù)。半之,以減蝕甚辰刻,為虧初;以加蝕甚辰刻,為復(fù)末。其月蝕求入更籌者,置月蝕定用刻數(shù),以其日每更差刻除,為更數(shù);不盡,以每籌差刻除,為籌數(shù)。綜之為定用更籌。乃累計日入至蝕甚辰刻置之,以昏刻加日入辰刻減之,馀以更籌差刻除之。所得命以初更籌外,即蝕甚籌。半定用更籌減之,為虧初;以加之,為復(fù)末。按天竺僧俱摩羅所傳斷日蝕法,其蝕朔日度躔于郁車宮者,的蝕。諸斷不得其蝕,據(jù)日所在之宮,有火星在前三后一之宮并伏在日下,并不蝕。若五星總出,并水見,又水在陰歷,及三星已上同聚一宿,亦不蝕。凡星與日別宮或別宿則易斷,若同宿則難斷。更有諸斷,理多煩碎,略陳梗概,不復(fù)具詳者。其天竺所云十二宮,則中國之十二次也。曰郁車宮者,即中國降婁之次也。十二次宿度,首尾具載“歷儀分野”卷中也。

  求九服所在蝕差 先測所在冬、夏至及春分定日中晷長短、陽城每日中晷常數(shù),校取同者,各因其日蝕差,即為所在冬、夏至及春秋分定日蝕差。

  求九服所在每氣蝕差 以夏至差減春分差,以春分差減冬至差,各為率。并二率半之,六而一,為夏率。二率相減,六一為差。置總差,六而一,為氣。半氣差,以加夏率,又以總差減之,為冬率。冬率即是冬至之率也。每以氣差加之各氣,為每氣定率。乃循其率,以減冬至蝕差,各得每氣初日蝕差。求每日,如陽城求之,若戴日之北,當(dāng)計其所在,皆反之,即得。

  大衍步五星術(shù)第七  歲星

  終率:一百二十一萬二千三百七十九;秒,十八。

  終日:三百九十八;馀,二千六百五十九;秒,六。

  變差算:空;馀,三十四;秒,十四?! ∠笏悖壕攀?;馀,二百三十八;秒,五十七十二。

  爻算:十五;馀,一百六十六;秒,四十六十二。

  鎮(zhèn)星  終率:一百一十四萬九千三百九十九;秒,九十八。

  終日:三百七十八;馀,二百七十九;秒,九十八。

  變差算:空;馀,二十二;秒,九十二。

  象算:九十二;馀,二百三十七;秒,八十七。

  爻算:十五;馀,一百六十六;秒,三十一?! √?br />
  終率:一百七十七萬五千三十;秒,十二。

  終日:五百八十三;馀,二千七百一十一;秒,十二。

  中合日:二百九十一;馀,二千八百七十五;秒,六。

  變差算:空;馀,三十;秒,五十三。

  象算:九十二;馀,二百三十八;秒,三十四五十四。

  爻算:十五;馀,一百六十六;秒,三十九九?! 〕叫?br />
  終率:三十五萬二千二百七十九;秒,七十二?! 〗K日:一百一十五;馀,二千六百七十九;秒,七十二。

  中合日:五十七;馀,二千八百五十九;秒,八十六。

  變差算:空;馀,一百三十六;秒,七十八六十。

  象算:九十一;馀,二百四十四;秒,九十八六十。

  爻算:十五;馀,一百六十七;秒,三十九七十四。

  辰法:七百六十。

  秒法:一百。

  微分法:九十六。

  推五星平合 置中積分,以天正冬至小馀減之,各以其星終率去之,不盡者,返以減終率,滿大衍通法為日,不滿為馀,即所求年天正冬至夜半后星平合日算及馀秒也。

  求平合入爻象歷 置積年,各以其星變以差乘之,滿乾實去之,不滿者,以大衍通法約之,為日。不盡為馀秒。以減其星冬至夜半后平合日算及馀秒,即平合入歷算數(shù)及馀秒也。各四約其馀,同其辰法也。

  求平合入四象 置歷算數(shù)及秒,以一象之算及馀秒除之,所得,依入爻象次命起少陽算外,即平合所入象算數(shù)及馀秒也。

  求平合入六爻 置所入象算數(shù)及馀秒,以一爻之算及馀秒除之,所得,命起其象初爻算外,即平合所入爻算數(shù)及馀秒也。

  求四象六爻每算損益及進(jìn)退定數(shù) 以所入爻與后爻損益率相減為前差,又以后爻與次后爻損益率相減為后差,前后差相減為中差。置所入爻并后爻損益率,半中差以加之,九之,二百七十四而一,為爻末率,因為后爻初率。皆因前爻末率,以為后爻初率。初末之率相減,為爻差。倍爻差,九之,二百七十四而一為算差。半之,加減初末,各為定率。以算差累加減爻初定率,少象以差減,老象以差加。為每損益率。循累其率,隨所入爻,損益其下進(jìn)退,即各得其算定。其四象初爻無初率,上爻無末率,皆置本爻損益,四而九之,二百七十四而一,各以初末率減之,皆互得其率。馀依術(shù)算,各得所求。

  求平合入進(jìn)退定數(shù) 各置其星平合所入爻之算差,半之,以減其所入算損益率。損者,以所入馀乘限差,辰法除,并差而半之;益者,半入馀乘差,亦辰法除。加所減之率,乃以入馀乘之,辰法而一,所得以損益其算下進(jìn)退,各為平合所入進(jìn)退定數(shù)。此法微密,用算稍繁。若從省求之,亦可置其所入算馀,以乘其下?lián)p益率,如辰法而一,所得以損益其算下進(jìn)退,各為定數(shù)。

  求常合 置平合所入進(jìn)退定數(shù),金星則倍置之。各以合下乘數(shù)乘之,除數(shù)除之,所得滿辰法為日,不滿為馀,以進(jìn)加退減平合日算及馀秒,先以四約平合馀,然以進(jìn)加退減也。即為冬至夜半后常合日算及馀也。

  求定合 置常合日先后定數(shù),四而一,所得滿辰法為日,不滿為馀。乃以先減后加常合算及馀,即為冬至夜半后定合日算及馀也。

  求定合度 置其日盈縮分,四而一以定合馀乘之,滿辰法而一,所得以盈加縮減其定馀,以加其日夜半日度馀,先四約夜半日度馀以加之。滿辰法從度。依前命之算外,即為定合加時度及馀也。

  求定合月日 置冬至夜半后定合日算及馀秒,以天正冬至大小馀加之,天正經(jīng)朔大小馀減之。其至、朔小馀,皆以四約之,然用加減。若至大馀少于經(jīng)朔大馀者,又以爻數(shù)加之,然以經(jīng)朔大小馀減之。其馀滿四象之策及馀,除之,為月數(shù),不盡者,為入朔日算及馀。命月數(shù)起天正日算起經(jīng)朔算外,即定所在日月也。其定朔大馀有進(jìn)退,進(jìn)減退加一日,為在其日月定及馀也?! ∏蠖ê先胴场≈贸:霞岸ê蠎?yīng)加減定數(shù),同名相從,異名相消。乃以加減其平合入爻算馀,滿若不足,進(jìn)退其算,即為定合入爻算數(shù)及馀也?! ∏笞冃谐跞杖胴场≈枚ê先胴乘銛?shù)及馀,以合后伏下變行度常率加之,滿爻率去之,命爻次如前,即次變初日入爻算數(shù)及馀也。更求次變?nèi)胴匙內(nèi)?,但以其下行度常加之,去命如上?jié)。

  求變行初日入進(jìn)退定數(shù) 各置其變行初日入爻算數(shù)及馀,如平合求進(jìn)退術(shù)入之,即得變行初日所入進(jìn)退定數(shù)也。置進(jìn)退定數(shù),各以其下乘數(shù)乘之,除數(shù)除之,所得各為進(jìn)退變率。

  求變行日度率 置其本進(jìn)退變率與后變率,同名者,相消為差。在進(jìn)前少,在退前多,各以差為加;在進(jìn)前多,在退前少,各以差為減。異名者,相從謂并。前退后進(jìn),各以并為加;前進(jìn)后退,各以并為減。逆行度率則反之。皆以差及并,加減日度中率,各為日度變率。其水星疾行,直以差以并加減度之中率,為變率。其日直因中率為變率,不煩加減也。

  求變行日度定率 以定合日與后變初日先后定數(shù),同名相消為差,異名者相從為并。四而一,所得滿辰法為度。乃以盈加縮減其合后伏度之變率及合前伏日之變率。金水夕合日度,加減反之。其二留日之變率,若差于中率者,即以所差之?dāng)?shù)為度,各加減本遲度之變率。謂以多于中率之?dāng)?shù)加之,少于中率之?dāng)?shù)減之。以下加減準(zhǔn)此。退行度變率,若差于中率者,即倍所差之?dāng)?shù),各加減本疾度之變率。其木土二星,既無遲疾,即加減前后順行度之變率。其水星疾行度之變率,若差于中率者,即以所差之?dāng)?shù)為日,各加減留日變率。其留日變率若少不足減者,即侵減遲日變率也。各加減變率訖,皆為日度定率。其日定率有分者,前后輩之。輩,配也。以少分配多分,滿全為日,有馀轉(zhuǎn)配。其諸變率不加減者,皆依變率為定率。

  求定合后夜半星所在度 置其星定合馀,以減辰法,馀以其星初日行分乘之,辰法而一,以加定合加時度馀,滿辰法為度。依前命之算外,即定合后夜半星所在宿及馀。自此以后,各依其星,計日行度所至,皆從夜半為始也。轉(zhuǎn)求次日夜半星行至:各以其星一日所行度分,順加退減之。其行有小分者,各滿其法從行分一。行分滿辰法,從度一。合之前后,伏不注度,留者因前,退則依減。順行出虛,去六虛之差;退行入虛,先加此差。先置六虛之差,四而一,然用加減。訖,皆以轉(zhuǎn)法約行分為度分,各得每日所至。其三星之行日度定率,或加或減,益疾益遲,每日漸差,難為預(yù)定,今且略據(jù)日度中率商量置之。其定率既有盈縮,即差數(shù)合隨而增損,當(dāng)先檢括諸變定率與中率相近者,因用其差,求其初末之日行分為主。自馀變因此消息,加減其差,各求初末行分。循環(huán)比校,使際會參合,衰殺相循。其金水皆以平行為主,前后諸變,亦準(zhǔn)此求之。其合前伏雖有日度定率,如至合而與后算計卻不葉者,皆從后算為定。其五星初見伏之度,去日不等,各以日度與星度相校。木去日十四度,金十一度,火土水各十七度,皆見;各減一度皆伏。其木火土三星前順之初,后順之末,又金水疾行、留、退初末,皆是見伏之初日,注歷消息定之。其金水及日月等度,并棄其分也。

  求每日差 置所差分為實,以所差日為法。實如法而一,所得為行分,不盡者為小分。即是也每日差所行分及小分也。其差若全,不用此術(shù)。

  求平行度及分 置度定率,以辰法乘之,有分者從之,如日定率而一,為平行分。不盡,為小分。其行分滿辰法為度,即是一日所行度及分。

  求差行初末日行度及分 置日定率減一,以差分乘之。二而一,為差率,以加減平行分。益疾者,以差率減平為初日,加平為末日。益遲者,以差率加平為初日,減平為末日也。加減訖,即是初末日所行度及分。其差不全而與日相合者,先置日定率減一,以所差分乘之,為實。倍所差日為法。實如法而一,為行分。不盡者,因為小分,然為差率。

  求差行次日行度及分 置初日行分,益遲者,以每日差減之;益疾者,以每日差加之,即為次日行度及分也。其每日差、初日行皆有小分,母既不同,當(dāng)令同之。然用加減,轉(zhuǎn)求次日,準(zhǔn)此各得所求也。

  徑求差行馀日行度及分 置所求日減一,以每日差乘之,以加減初日行分,益遲減之,益疾加之。滿辰法為度,不滿為行分,即是所求日行度及分也。

  求差行,先定日數(shù),徑求積度及分 置所求日減一,次每日差乘之,二而一,所得,以加減初日行分。益遲減之,益疾加之。以所求日乘之,如辰法而一,為積度。不盡者,為行分。即是從初日至所求日積度及分也。

  求差行,先定度數(shù),徑求日數(shù) 置所求行度,以辰法乘之,有分者從之。八之,如每日差而一,為積。倍初日行分,以每日差加減之。益遲者加之,益疾者減之。如每日差而一,為率。今自乘,以積加減之,益遲者以積減之,益疾者以積加之。開方除之。所得,以率加減之。益遲者以率加之,益疾者以率減之。乃半之,即所求日數(shù)也。其開方除者,置所開之?dāng)?shù)為實,借一算于實之下,名曰下法。步之,超一位,置商于上方,副商于下法之上,名曰方法。命上商以除實,畢,倍方法一折,下法再折,乃置后商于下法之上,名曰隅法。副隅并方,命后商以除實,畢,隅從方法折下就除,如前開之。訖除,依上術(shù)求之即得也。

  求星行黃道南北 各視其星變行入陰陽爻而定之。其前變?nèi)腙栘碁辄S道北,入陰爻為黃道南;后變?nèi)腙栘碁辄S道南,入陰爻為黃道北。其金水二星,以爻變?yōu)榍白儯饔嬈渥冃?,起初日入爻之算,盡老象上爻末算之?dāng)?shù),不滿變行度常率者,因置其數(shù),以變行日定率乘之,如變行度常率而一,為日。其入變?nèi)諗?shù),與此日數(shù)以下者,星在黃道南北,依本所入陰陽爻為定。過此日數(shù)之外者,黃道南北則返之。

上一章目錄下一章

Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號