蒙特卡羅模擬
前一章中,我們曾經(jīng)討論了利用蒙特卡羅模擬作為風(fēng)險評估的工具。這些模擬也有助于評估風(fēng)險價值,但要將重點放在投資損失超過規(guī)定值的概率上,而不是整個風(fēng)險分布。
概述
蒙特卡羅模擬的前兩步與方差—協(xié)方差法相似,我們先確定影響資產(chǎn)的風(fēng)險,再將每一項資產(chǎn)用標(biāo)準化工具轉(zhuǎn)換成一個一個頭寸。到了第三步,兩種模型有了差異。蒙特卡羅模擬不是去計算風(fēng)險資產(chǎn)的方差和協(xié)方差,而是用模擬的方法確定市場風(fēng)險的概率分布,還要判斷這些市場風(fēng)險的變動趨勢。在前面提到的六個月美元兌歐元遠期合約的例子中,我們要計算六個月零息美元債券、六個月零息歐元債券以及美元兌歐元即期匯率的規(guī)律分布,還要判斷這些工具之間的相互關(guān)系。
如果我們假設(shè)所有的變量都呈正態(tài)分布,那么對這些參數(shù)進行計算就顯得有點為時過早。但是,蒙特卡羅模擬的優(yōu)勢恰恰表現(xiàn)在我們可以對變量選擇合適的分布方式。此外,我們還可以用主觀判斷來修改這些分布。
在確定了分布模式以后,模擬程序開始。在每次運行中,市場風(fēng)險變量都會有不同的結(jié)果,而投資組合的風(fēng)險價值就反映在結(jié)果中。經(jīng)過反復(fù)運行,有時甚至多達數(shù)千次,我們可以得到一個投資組合風(fēng)險價值的分布曲線,以此來測量風(fēng)險價值。例如,假設(shè)我們對模型運行10 000次,從中獲得相應(yīng)的投資組合風(fēng)險價值。我們可以將這些價值從最高到最低排序,百分位為95的風(fēng)險價值對應(yīng)第500個最低值,而百分位為99的風(fēng)險價值對應(yīng)第100個最低值。